These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34088083)

  • 1. Prediction of copper ions adsorption by attapulgite adsorbent using tuned-artificial intelligence model.
    Bhagat SK; Pyrgaki K; Salih SQ; Tiyasha T; Beyaztas U; Shahid S; Yaseen ZM
    Chemosphere; 2021 Aug; 276():130162. PubMed ID: 34088083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of lead (Pb) adsorption on attapulgite clay using the feasibility of data intelligence models.
    Bhagat SK; Paramasivan M; Al-Mukhtar M; Tiyasha T; Pyrgaki K; Tung TM; Yaseen ZM
    Environ Sci Pollut Res Int; 2021 Jun; 28(24):31670-31688. PubMed ID: 33611749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the sorption efficiency of heavy metal based on the biochar characteristics, metal sources, and environmental conditions using various novel hybrid machine learning models.
    Ke B; Nguyen H; Bui XN; Bui HB; Choi Y; Zhou J; Moayedi H; Costache R; Nguyen-Trang T
    Chemosphere; 2021 Aug; 276():130204. PubMed ID: 34088091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive modeling of copper (II) adsorption from aqueous solutions by sawdust: a comparative analysis of adaptive neuro-fuzzy interference system (ANFIS) and artificial neural network (ANN) approaches.
    Claude BJ; Onyango MS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2024; 59(4):172-179. PubMed ID: 38613163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel.
    Wong YJ; Arumugasamy SK; Chung CH; Selvarajoo A; Sethu V
    Environ Monit Assess; 2020 Jun; 192(7):439. PubMed ID: 32556670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: artificial neural network modeling and genetic algorithm optimization.
    Ghaedi M; Shojaeipour E; Ghaedi AM; Sahraei R
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 142():135-49. PubMed ID: 25699703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel artificial intelligent model for predicting water treatment efficiency of various biochar systems based on artificial neural network and queuing search algorithm.
    Zheng X; Nguyen H
    Chemosphere; 2022 Jan; 287(Pt 3):132251. PubMed ID: 34826934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance evaluation of nanotubular halloysites from weathered pegmatites in removing heavy metals from water through novel artificial intelligence-based models and human-based optimization algorithm.
    Bac BH; Nguyen H; Thao NTT; Duyen LT; Hanh VT; Dung NT; Khang LQ; An DM
    Chemosphere; 2021 Nov; 282():131012. PubMed ID: 34118630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites.
    Wang X; Zheng Y; Wang A
    J Hazard Mater; 2009 Sep; 168(2-3):970-7. PubMed ID: 19342172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of sediment heavy metal at the Australian Bays using newly developed hybrid artificial intelligence models.
    Bhagat SK; Tiyasha T; Awadh SM; Tung TM; Jawad AH; Yaseen ZM
    Environ Pollut; 2021 Jan; 268(Pt B):115663. PubMed ID: 33120144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption characteristics of Cu(II) from aqueous solution onto poly(acrylamide)/attapulgite composite.
    Chen H; Wang A
    J Hazard Mater; 2009 Jun; 165(1-3):223-31. PubMed ID: 19008046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced adsorption of fluoride from aqueous solution using an iron-modified attapulgite adsorbent.
    He ZL; Zhang GK; Xu W
    Water Environ Res; 2013 Feb; 85(2):167-74. PubMed ID: 23472333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative artificial intelligence models for Australian coastal sediment lead prediction: An investigation of in-situ measurements and meteorological parameters effects.
    Bhagat SK; Tiyasha T; Kumar A; Malik T; Jawad AH; Khedher KM; Deo RC; Yaseen ZM
    J Environ Manage; 2022 May; 309():114711. PubMed ID: 35182982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of fluoride ions from aqueous solution using modified attapulgite as adsorbent.
    Zhang J; Xie S; Ho YS
    J Hazard Mater; 2009 Jun; 165(1-3):218-22. PubMed ID: 19013016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill.
    Abunama T; Othman F; Ansari M; El-Shafie A
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3368-3381. PubMed ID: 30511225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective adsorption of tannin from flavonoids by organically modified attapulgite clay.
    Huang J; Liu Y; Wang X
    J Hazard Mater; 2008 Dec; 160(2-3):382-7. PubMed ID: 18433994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Adsorption characteristics and mechanism of uranium on attapulgite].
    Liu J; Chen DY; Zhang J; Song G; Luo DG
    Huan Jing Ke Xue; 2012 Aug; 33(8):2889-94. PubMed ID: 23213920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle.
    Ghaedi M; Zeinali N; Ghaedi AM; Teimuori M; Tashkhourian J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 125():264-77. PubMed ID: 24556135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of Cu(II) Adsorption from an Aqueous Solution Using an Artificial Neural Network (ANN).
    Khan T; Binti Abd Manan TS; Isa MH; Ghanim AAJ; Beddu S; Jusoh H; Iqbal MS; Ayele GT; Jami MS
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of three computational modelling methods for the prediction of virological response to combination HIV therapy.
    Wang D; Larder B; Revell A; Montaner J; Harrigan R; De Wolf F; Lange J; Wegner S; Ruiz L; Pérez-Elías MJ; Emery S; Gatell J; D'Arminio Monforte A; Torti C; Zazzi M; Lane C
    Artif Intell Med; 2009 Sep; 47(1):63-74. PubMed ID: 19524413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.