BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34088131)

  • 1. Magnetic properties and its application in the prediction of potentially toxic elements in aquatic products by machine learning.
    Li X; Yang B; Yang J; Fan Y; Qian X; Li H
    Sci Total Environ; 2021 Aug; 783():147083. PubMed ID: 34088131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of size-fractionated airborne particle-bound metals using MLR, BP-ANN and SVM analyses.
    Leng X; Wang J; Ji H; Wang Q; Li H; Qian X; Li F; Yang M
    Chemosphere; 2017 Aug; 180():513-522. PubMed ID: 28431389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metals in submicronic particulate matter (PM
    Li H; Dai Q; Yang M; Li F; Liu X; Zhou M; Qian X
    Chemosphere; 2020 Dec; 261():127571. PubMed ID: 32721685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of ANN and SVM for prediction nutrients in rivers.
    Stamenković LJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(8):867-873. PubMed ID: 34061713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study.
    Almansour NA; Syed HF; Khayat NR; Altheeb RK; Juri RE; Alhiyafi J; Alrashed S; Olatunji SO
    Comput Biol Med; 2019 Jun; 109():101-111. PubMed ID: 31054385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of 5-day biochemical oxygen demand in the Buriganga River of Bangladesh using novel hybrid machine learning algorithms.
    Nafsin N; Li J
    Water Environ Res; 2022 May; 94(5):e10718. PubMed ID: 35502725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lake water-level fluctuation forecasting using machine learning models: a systematic review.
    Zhu S; Lu H; Ptak M; Dai J; Ji Q
    Environ Sci Pollut Res Int; 2020 Dec; 27(36):44807-44819. PubMed ID: 32978734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf magnetic properties as a method for predicting heavy metal concentrations in PM
    Leng X; Qian X; Yang M; Wang C; Li H; Wang J
    Environ Pollut; 2018 Nov; 242(Pt A):922-930. PubMed ID: 30373037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction modeling of potentially toxic elements' hydrogeopollution using an integrated Q-mode HCs and ANNs machine learning approach in SE Nigeria.
    Egbueri JC
    Environ Sci Pollut Res Int; 2021 Aug; 28(30):40938-40956. PubMed ID: 33774793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of models for predicting the changes in phytoplankton community composition in the receiving water system of an inter-basin water transfer project.
    Zeng Q; Liu Y; Zhao H; Sun M; Li X
    Environ Pollut; 2017 Apr; 223():676-684. PubMed ID: 28196722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replacing the internal standard to estimate micropollutants using deep and machine learning.
    Baek SS; Choi Y; Jeon J; Pyo J; Park J; Cho KH
    Water Res; 2021 Jan; 188():116535. PubMed ID: 33147564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction Models for Railway Track Geometry Degradation Using Machine Learning Methods: A Review.
    Liao Y; Han L; Wang H; Zhang H
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China.
    Tao Y; Yuan Z; Xiaona H; Wei M
    Ecotoxicol Environ Saf; 2012 Jul; 81():55-64. PubMed ID: 22633085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of machine learning and its improvement technology in modeling of total energy consumption of air conditioning water system.
    Zhu Q; Liu M; Liu H; Zhu Y
    Math Biosci Eng; 2022 Mar; 19(5):4841-4855. PubMed ID: 35430843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the sorption efficiency of heavy metal based on the biochar characteristics, metal sources, and environmental conditions using various novel hybrid machine learning models.
    Ke B; Nguyen H; Bui XN; Bui HB; Choi Y; Zhou J; Moayedi H; Costache R; Nguyen-Trang T
    Chemosphere; 2021 Aug; 276():130204. PubMed ID: 34088091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of dissolved oxygen concentration in hypoxic river systems using support vector machine: a case study of Wen-Rui Tang River, China.
    Ji X; Shang X; Dahlgren RA; Zhang M
    Environ Sci Pollut Res Int; 2017 Jul; 24(19):16062-16076. PubMed ID: 28537025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing SVM and ANN based Machine Learning Methods for Species Identification of Food Contaminating Beetles.
    Bisgin H; Bera T; Ding H; Semey HG; Wu L; Liu Z; Barnes AE; Langley DA; Pava-Ripoll M; Vyas HJ; Tong W; Xu J
    Sci Rep; 2018 Apr; 8(1):6532. PubMed ID: 29695741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid quantification of active pharmaceutical ingredient for sugar-free Yangwei granules in commercial production using FT-NIR spectroscopy based on machine learning techniques.
    Zhao J; Tian G; Qiu Y; Qu H
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 245():118878. PubMed ID: 32919149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction mapping of human leptospirosis using ANN, GWR, SVM and GLM approaches.
    Mohammadinia A; Saeidian B; Pradhan B; Ghaemi Z
    BMC Infect Dis; 2019 Nov; 19(1):971. PubMed ID: 31722676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Application of near infrared spectroscopy combined with particle swarm optimization based least square support vactor machine to rapid quantitative analysis of Corni Fructus].
    Liu XS; Sun FF; Jin Y; Wu YJ; Gu ZX; Zhu L; Yan DL
    Yao Xue Xue Bao; 2015 Dec; 50(12):1645-51. PubMed ID: 27169290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.