These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 34088715)

  • 21. A probabilistic gene expression barcode for annotation of cell types from single-cell RNA-seq data.
    Grabski IN; Irizarry RA
    Biostatistics; 2022 Oct; 23(4):1150-1164. PubMed ID: 35770795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies.
    Baran Y; Doğan B
    Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.
    Gan Y; Chen Y; Xu G; Guo W; Zou G
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using transfer learning from prior reference knowledge to improve the clustering of single-cell RNA-Seq data.
    Mieth B; Hockley JRF; Görnitz N; Vidovic MM; Müller KR; Gutteridge A; Ziemek D
    Sci Rep; 2019 Dec; 9(1):20353. PubMed ID: 31889137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. scDEA: differential expression analysis in single-cell RNA-sequencing data via ensemble learning.
    Li HS; Ou-Yang L; Zhu Y; Yan H; Zhang XF
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. deCS: A Tool for Systematic Cell Type Annotations of Single-cell RNA Sequencing Data among Human Tissues.
    Pei G; Yan F; Simon LM; Dai Y; Jia P; Zhao Z
    Genomics Proteomics Bioinformatics; 2023 Apr; 21(2):370-384. PubMed ID: 35470070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data.
    Wu W; Liu Z; Ma X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33535230
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of Marker Genes in Infectious Diseases from ScRNA-seq Data Using Interpretable Machine Learning.
    Sganzerla Martinez G; Garduno A; Toloue Ostadgavahi A; Hewins B; Dutt M; Kumar A; Martin-Loeches I; Kelvin DJ
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MLSpatial: A machine-learning method to reconstruct the spatial distribution of cells from scRNA-seq by extracting spatial features.
    Zhu M; Li C; Lv K; Guo H; Hou R; Tian G; Yang J
    Comput Biol Med; 2023 Jun; 159():106873. PubMed ID: 37105115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One Cell At a Time (OCAT): a unified framework to integrate and analyze single-cell RNA-seq data.
    Wang CX; Zhang L; Wang B
    Genome Biol; 2022 Apr; 23(1):102. PubMed ID: 35443717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transfer learning for clustering single-cell RNA-seq data crossing-species and batch, case on uterine fibroids.
    Wang YM; Sun Y; Wang B; Wu Z; He XY; Zhao Y
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 37991248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic Cell Type Annotation Using Marker Genes for Single-Cell RNA Sequencing Data.
    Chen Y; Zhang S
    Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CellTICS: an explainable neural network for cell-type identification and interpretation based on single-cell RNA-seq data.
    Yin Q; Chen L
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38061196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Attention-based deep clustering method for scRNA-seq cell type identification.
    Li S; Guo H; Zhang S; Li Y; Li M
    PLoS Comput Biol; 2023 Nov; 19(11):e1011641. PubMed ID: 37948464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polled Digital Cell Sorter (p-DCS): Automatic identification of hematological cell types from single cell RNA-sequencing clusters.
    Domanskyi S; Szedlak A; Hawkins NT; Wang J; Paternostro G; Piermarocchi C
    BMC Bioinformatics; 2019 Jul; 20(1):369. PubMed ID: 31262249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrating Deep Supervised, Self-Supervised and Unsupervised Learning for Single-Cell RNA-seq Clustering and Annotation.
    Chen L; Zhai Y; He Q; Wang W; Deng M
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32674393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data.
    Wan H; Chen L; Deng M
    Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visualization of Single Cell RNA-Seq Data Using t-SNE in R.
    Zhou B; Jin W
    Methods Mol Biol; 2020; 2117():159-167. PubMed ID: 31960377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.