These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34088952)

  • 1. Enhancement of protein thermostability by three consecutive mutations using loop-walking method and machine learning.
    Yoshida K; Kawai S; Fujitani M; Koikeda S; Kato R; Ema T
    Sci Rep; 2021 Jun; 11(1):11883. PubMed ID: 34088952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Screening for mutants with thermostabe lipase A from Burkholderia sp. ZYB002].
    Liu Y; Qiu L; Huang J; Zhao B; Wang Z; Zhu X; Gao Y; Shu Z
    Wei Sheng Wu Xue Bao; 2015 Jun; 55(6):748-54. PubMed ID: 26563000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Protocols for Generating Focused Mutant Libraries and Screening for Thermostable Proteins.
    Fürst MJLJ; Martin C; Lončar N; Fraaije MW
    Methods Enzymol; 2018; 608():151-187. PubMed ID: 30173762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Clostridium absonum 7α-hydroxysteroid Dehydrogenase for Enhancing Thermostability Based on Flexible Site and ΔΔG Prediction.
    Lou D; Tan J; Zhu L; Ji S; Tang S; Yao K; Han J; Wang B
    Protein Pept Lett; 2018; 25(3):230-235. PubMed ID: 29141528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational design of a Yarrowia lipolytica derived lipase for improved thermostability.
    Zhang H; Sang J; Zhang Y; Sun T; Liu H; Yue R; Zhang J; Wang H; Dai Y; Lu F; Liu F
    Int J Biol Macromol; 2019 Sep; 137():1190-1198. PubMed ID: 31299254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis.
    Mohammadi M; Sepehrizadeh Z; Ebrahim-Habibi A; Shahverdi AR; Faramarzi MA; Setayesh N
    Enzyme Microb Technol; 2016 Nov; 93-94():18-28. PubMed ID: 27702479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Enhanced thermostability of Rhizopus chinensis lipase by error-prone PCR].
    Wang R; Yu X; Xu Y
    Sheng Wu Gong Cheng Xue Bao; 2013 Dec; 29(12):1753-64. PubMed ID: 24660623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifying the chain-length selectivity of the lipase from Burkholderia cepacia KWI-56 through in vitro combinatorial mutagenesis in the substrate-binding site.
    Yang J; Koga Y; Nakano H; Yamane T
    Protein Eng; 2002 Feb; 15(2):147-52. PubMed ID: 11917151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the thermostability of lipase Lip2 from Yarrowia lipolytica.
    Wen S; Tan T; Zhao H
    J Biotechnol; 2012 Dec; 164(2):248-53. PubMed ID: 22982168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation.
    Tian J; Wang P; Gao S; Chu X; Wu N; Fan Y
    FEBS J; 2010 Dec; 277(23):4901-8. PubMed ID: 20977676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein engineering by random mutagenesis and structure-guided consensus of Geobacillus stearothermophilus Lipase T6 for enhanced stability in methanol.
    Dror A; Shemesh E; Dayan N; Fishman A
    Appl Environ Microbiol; 2014 Feb; 80(4):1515-27. PubMed ID: 24362426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational approach for designing thermostable Candida antarctica lipase B by molecular dynamics simulation.
    Park HJ; Park K; Kim YH; Yoo YJ
    J Biotechnol; 2014 Dec; 192 Pt A():66-70. PubMed ID: 25270022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the Thermostability of Rhizomucor miehei Lipase with a Limited Screening Library by Rational-Design Point Mutations and Disulfide Bonds.
    Li G; Fang X; Su F; Chen Y; Xu L; Yan Y
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101200
    [No Abstract]   [Full Text] [Related]  

  • 14. [Improvement of the the thermostability of Penicillium expansum lipase by mutagenesis the random mutant ep8 at K55R].
    Cai SL; Lin JH; Wang CM; Lin L
    Sheng Wu Gong Cheng Xue Bao; 2007 Jul; 23(4):677-80. PubMed ID: 17822043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Relation Between Lipase Thermostability and Dynamics of Hydrogen Bond and Hydrogen Bond Network Based on Long Time Molecular Dynamics Simulation.
    Zhang L; Ding Y
    Protein Pept Lett; 2017; 24(7):643-648. PubMed ID: 28464764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the thermostability of a mono- and diacylglycerol lipase from Malassizia globose by stabilizing a flexible loop in the catalytic pocket.
    Xing YN; Tan J; Wang Y; Wang J
    Enzyme Microb Technol; 2021 Sep; 149():109849. PubMed ID: 34311886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the thermostable properties of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by a combinatorial directed evolution strategy.
    Wu Z; Deng W; Tong Y; Liao Q; Xin D; Yu H; Feng J; Tang L
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3201-3211. PubMed ID: 28074221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into Improved Thermostability of Cold-Adapted Staphylococcal Lipase by Glycine to Cysteine Mutation.
    Veno J; Rahman RNZRA; Masomian M; Ali MSM; Kamarudin NHA
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31480403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing thermal tolerance of a fungal GH11 xylanase guided by B-factor analysis and multiple sequence alignment.
    Han N; Ma Y; Mu Y; Tang X; Li J; Huang Z
    Enzyme Microb Technol; 2019 Dec; 131():109422. PubMed ID: 31615659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermostability improvement of maltogenic amylase MAUS149 by error prone PCR.
    Ben Mabrouk S; Ayadi DZ; Ben Hlima H; Bejar S
    J Biotechnol; 2013 Dec; 168(4):601-6. PubMed ID: 23994264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.