These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34088952)

  • 41. Rational design of K173A substitution enhances thermostability coupled with catalytic activity of Enterobacter sp. Bn12 lipase.
    Farrokh P; Yakhchali B; Karkhane AA
    J Mol Microbiol Biotechnol; 2014; 24(4):262-9. PubMed ID: 25277599
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Directed evolution to improve the thermostability of prolyl endopeptidase.
    Uchiyama H; Inaoka T; Ohkuma-Soyejima T; Togame H; Shibanaka Y; Yoshimoto T; Kokubo T
    J Biochem; 2000 Sep; 128(3):441-7. PubMed ID: 10965043
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improving thermostability of papain through structure-based protein engineering.
    Choudhury D; Biswas S; Roy S; Dattagupta JK
    Protein Eng Des Sel; 2010 Jun; 23(6):457-67. PubMed ID: 20304972
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering a large protein by combined rational and random approaches: stabilizing the Clostridium thermocellum cellobiose phosphorylase.
    Ye X; Zhang C; Zhang YH
    Mol Biosyst; 2012 Jun; 8(6):1815-23. PubMed ID: 22511238
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improved thermostability of lipase B from Candida antarctica by directed evolution and display on yeast surface.
    Peng XQ
    Appl Biochem Biotechnol; 2013 Jan; 169(2):351-8. PubMed ID: 23188656
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity.
    Singh B; Bulusu G; Mitra A
    J Comput Aided Mol Des; 2016 Oct; 30(10):899-916. PubMed ID: 27696241
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermostabilization of Bacillus subtilis lipase A by minimizing the structural deformation caused by packing enhancement.
    Yun HS; Park HJ; Joo JC; Yoo YJ
    J Ind Microbiol Biotechnol; 2013 Nov; 40(11):1223-9. PubMed ID: 24005991
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods.
    Chen A; Li Y; Nie J; McNeil B; Jeffrey L; Yang Y; Bai Z
    Enzyme Microb Technol; 2015 Oct; 78():74-83. PubMed ID: 26215347
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improved thermostability of creatinase from Alcaligenes Faecalis through non-biased phylogenetic consensus-guided mutagenesis.
    Bai X; Li D; Ma F; Deng X; Luo M; Feng Y; Yang G
    Microb Cell Fact; 2020 Oct; 19(1):194. PubMed ID: 33069232
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polymerase chain reaction-based random mutagenesis: production and characterization of thermostable mutants of Zymomonas mobilis alcohol dehydrogenase-2.
    Rellos P; Scopes RK
    Protein Expr Purif; 1994 Jun; 5(3):270-7. PubMed ID: 7950371
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineering of Thermal Stability in a Cold-Active Oligo-1,6-Glucosidase from
    Berlina YY; Petrovskaya LE; Kryukova EA; Shingarova LN; Gapizov SS; Kryukova MV; Rivkina EM; Kirpichnikov MP; Dolgikh DA
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439895
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Substitution of Asp189 residue alters the activity and thermostability of Geobacillus sp. NTU 03 lipase.
    Shih TW; Pan TM
    Biotechnol Lett; 2011 Sep; 33(9):1841-6. PubMed ID: 21544610
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of thermostable Candida antarctica lipase B through novel in silico design of disulfide bridge.
    Le QA; Joo JC; Yoo YJ; Kim YH
    Biotechnol Bioeng; 2012 Apr; 109(4):867-76. PubMed ID: 22095554
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhancing thermostability of Yarrowia lipolytica lipase 2 through engineering multiple disulfide bonds and mitigating reduced lipase production associated with disulfide bonds.
    Li L; Zhang S; Wu W; Guan W; Deng Z; Qiao H
    Enzyme Microb Technol; 2019 Jul; 126():41-49. PubMed ID: 31000163
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Control of lipase enantioselectivity by engineering the substrate binding site and access channel.
    Lafaquière V; Barbe S; Puech-Guenot S; Guieysse D; Cortés J; Monsan P; Siméon T; André I; Remaud-Siméon M
    Chembiochem; 2009 Nov; 10(17):2760-71. PubMed ID: 19816890
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method.
    Tian J; Wang P; Huang L; Chu X; Wu N; Fan Y
    Appl Microbiol Biotechnol; 2013 Apr; 97(7):2997-3006. PubMed ID: 23001009
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improvement of thermostability and activity of Trichoderma reesei endo-xylanase Xyn III on insoluble substrates.
    Matsuzawa T; Kaneko S; Yaoi K
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8043-51. PubMed ID: 27138202
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR.
    Kim MS; Lei XG
    Appl Microbiol Biotechnol; 2008 May; 79(1):69-75. PubMed ID: 18340444
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Introducing a salt bridge into the lipase of Stenotrophomonas maltophilia results in a very large increase in thermal stability.
    Wu JP; Li M; Zhou Y; Yang LR; Xu G
    Biotechnol Lett; 2015 Feb; 37(2):403-7. PubMed ID: 25257598
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evolutionary molecular engineering by random elongation mutagenesis.
    Matsuura T; Miyai K; Trakulnaleamsai S; Yomo T; Shima Y; Miki S; Yamamoto K; Urabe I
    Nat Biotechnol; 1999 Jan; 17(1):58-61. PubMed ID: 9920270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.