These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 34089758)
1. The basicity of an active-site water molecule discriminates between tyrosinase and catechol oxidase activity. Matoba Y; Oda K; Muraki Y; Masuda T Int J Biol Macromol; 2021 Jul; 183():1861-1870. PubMed ID: 34089758 [TBL] [Abstract][Full Text] [Related]
2. Activation Mechanism of the Streptomyces Tyrosinase Assisted by the Caddie Protein. Matoba Y; Kihara S; Muraki Y; Bando N; Yoshitsu H; Kuroda T; Sakaguchi M; Kayama K; Tai H; Hirota S; Ogura T; Sugiyama M Biochemistry; 2017 Oct; 56(41):5593-5603. PubMed ID: 28902505 [TBL] [Abstract][Full Text] [Related]
3. The catalytic cycle of catechol oxidase. Siegbahn PE J Biol Inorg Chem; 2004 Jul; 9(5):577-90. PubMed ID: 15185133 [TBL] [Abstract][Full Text] [Related]
4. Influencing the monophenolase/diphenolase activity ratio in tyrosinase. Goldfeder M; Kanteev M; Adir N; Fishman A Biochim Biophys Acta; 2013 Mar; 1834(3):629-33. PubMed ID: 23305929 [TBL] [Abstract][Full Text] [Related]
6. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. Matoba Y; Kumagai T; Yamamoto A; Yoshitsu H; Sugiyama M J Biol Chem; 2006 Mar; 281(13):8981-90. PubMed ID: 16436386 [TBL] [Abstract][Full Text] [Related]
7. A molecular mechanism for copper transportation to tyrosinase that is assisted by a metallochaperone, caddie protein. Matoba Y; Bando N; Oda K; Noda M; Higashikawa F; Kumagai T; Sugiyama M J Biol Chem; 2011 Aug; 286(34):30219-31. PubMed ID: 21730070 [TBL] [Abstract][Full Text] [Related]
8. Secretion of tyrosinase in Streptomyces glaucescens. Crameri R; Ettlinger L; Hütter R; Lerch K; Suter MA; Vetterli JA J Gen Microbiol; 1982 Feb; 128(2):371-9. PubMed ID: 6804598 [TBL] [Abstract][Full Text] [Related]
9. Catalytic mechanism of the tyrosinase reaction toward the Tyr98 residue in the caddie protein. Matoba Y; Kihara S; Bando N; Yoshitsu H; Sakaguchi M; Kayama K; Yanagisawa S; Ogura T; Sugiyama M PLoS Biol; 2018 Dec; 16(12):e3000077. PubMed ID: 30596633 [TBL] [Abstract][Full Text] [Related]
10. Copper-Oxygen Dynamics in the Tyrosinase Mechanism. Fujieda N; Umakoshi K; Ochi Y; Nishikawa Y; Yanagisawa S; Kubo M; Kurisu G; Itoh S Angew Chem Int Ed Engl; 2020 Aug; 59(32):13385-13390. PubMed ID: 32356371 [TBL] [Abstract][Full Text] [Related]
11. Conversion of walnut tyrosinase into a catechol oxidase by site directed mutagenesis. Panis F; Kampatsikas I; Bijelic A; Rompel A Sci Rep; 2020 Feb; 10(1):1659. PubMed ID: 32015350 [TBL] [Abstract][Full Text] [Related]
12. Catecholase activity of a series of dicopper(II) complexes with variable Cu-OH(phenol) moieties. Neves A; Rossi LM; Bortoluzzi AJ; Szpoganicz B; Wiezbicki C; Schwingel E; Haase W; Ostrovsky S Inorg Chem; 2002 Apr; 41(7):1788-94. PubMed ID: 11925171 [TBL] [Abstract][Full Text] [Related]
13. Type-3 copper proteins: recent advances on polyphenol oxidases. Kaintz C; Mauracher SG; Rompel A Adv Protein Chem Struct Biol; 2014; 97():1-35. PubMed ID: 25458353 [TBL] [Abstract][Full Text] [Related]
14. Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Decker H; Tuczek F Trends Biochem Sci; 2000 Aug; 25(8):392-7. PubMed ID: 10916160 [TBL] [Abstract][Full Text] [Related]
15. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Olivares C; Solano F Pigment Cell Melanoma Res; 2009 Dec; 22(6):750-60. PubMed ID: 19735457 [TBL] [Abstract][Full Text] [Related]
16. Modeling tyrosinase and catecholase activity using new m-Xylyl-based ligands with bidentate alkylamine terminal coordination. Mandal S; Mukherjee J; Lloret F; Mukherjee R Inorg Chem; 2012 Dec; 51(24):13148-61. PubMed ID: 23194383 [TBL] [Abstract][Full Text] [Related]
17. Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference. Solem E; Tuczek F; Decker H Angew Chem Int Ed Engl; 2016 Feb; 55(8):2884-8. PubMed ID: 26773413 [TBL] [Abstract][Full Text] [Related]
18. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes? Kampatsikas I; Rompel A Chembiochem; 2021 Apr; 22(7):1161-1175. PubMed ID: 33108057 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of mushroom tyrosinase by a newly synthesized ligand: inhibition kinetics and computational simulations. Alijanianzadeh M; Saboury AA; Ganjali MR; Hadi-Alijanvand H; Moosavi-Movahedi AA J Biomol Struct Dyn; 2012; 30(4):448-59. PubMed ID: 22686596 [TBL] [Abstract][Full Text] [Related]
20. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases. Molitor C; Mauracher SG; Rompel A Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1806-15. PubMed ID: 26976571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]