BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 3409004)

  • 1. Dose-response relationship between light irradiance and the suppression of plasma melatonin in human volunteers.
    Brainard GC; Lewy AJ; Menaker M; Fredrickson RH; Miller LS; Weleber RG; Cassone V; Hudson D
    Brain Res; 1988 Jun; 454(1-2):212-8. PubMed ID: 3409004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of various irradiances of artificial light, twilight, and moonlight on the suppression of pineal melatonin content in the Syrian hamster.
    Brainard GC; Richardson BA; Hurlbut EC; Steinlechner S; Matthews SA; Reiter RJ
    J Pineal Res; 1984; 1(2):105-19. PubMed ID: 6545810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The suppression of nocturnal pineal melatonin in the Syrian hamster: dose-response curves at 500 and 360 nm.
    Podolin PL; Rollag MD; Brainard GC
    Endocrinology; 1987 Jul; 121(1):266-70. PubMed ID: 3595519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoreceptor damage and eye pigmentation: influence on the sensitivity of rat pineal N-acetyltransferase activity and melatonin levels to light at night.
    Webb SM; Champney TH; Lewiński AK; Reiter RJ
    Neuroendocrinology; 1985 Mar; 40(3):205-9. PubMed ID: 3990908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of goats to a light pulse during the night as assessed by suppression of melatonin concentrations in the plasma.
    Deveson SL; Arendt J; Forsyth IA
    J Pineal Res; 1990; 8(2):169-77. PubMed ID: 2352117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential response of pineal melatonin levels to light at night in laboratory-raised and wild-captured 13-lined ground squirrels (Spermophilus tridecemlineatus).
    Reiter RJ; Steinlechner S; Richardson BA; King TS
    Life Sci; 1983 Jun; 32(23):2625-9. PubMed ID: 6682923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The suppression of pineal melatonin content and N-acetyltransferase activity by different light irradiances in the Syrian hamster: a dose-response relationship.
    Brainard GC; Richardson BA; King TS; Matthews SA; Reiter RJ
    Endocrinology; 1983 Jul; 113(1):293-6. PubMed ID: 6861704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of different light spectra on the suppression of pineal melatonin content in the Syrian hamster.
    Brainard GC; Richardson BA; King TS; Reiter RJ
    Brain Res; 1984 Mar; 294(2):333-9. PubMed ID: 6704731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of pineal melatonin in Peromyscus leucopus by different monochromatic wavelengths of visible and near-ultraviolet light (UV-A).
    Benshoff HM; Brainard GC; Rollag MD; Lynch GR
    Brain Res; 1987 Sep; 420(2):397-402. PubMed ID: 3676772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of visual sensitivity for suppression of pineal melatonin and circadian phase-shifting in the golden hamster.
    Nelson DE; Takahashi JS
    Brain Res; 1991 Jul; 554(1-2):272-7. PubMed ID: 1933309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of light irradiance on hydroxyindole-O-methyltransferase activity, serotonin-N-acetyltransferase activity, and radioimmunoassayable melatonin levels in the pineal gland of the diurnally active Richardson's ground squirrel.
    Reiter RJ; Hurlbut EC; Brainard GC; Steinlechner S; Richardson BA
    Brain Res; 1983 Dec; 288(1-2):151-7. PubMed ID: 6686468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of the human circadian system to short-wavelength (420-nm) light.
    Brainard GC; Sliney D; Hanifin JP; Glickman G; Byrne B; Greeson JM; Jasser S; Gerner E; Rollag MD
    J Biol Rhythms; 2008 Oct; 23(5):379-86. PubMed ID: 18838601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red-light-induced suppression of melatonin synthesis is mediated by N-methyl-D-aspartate receptor activation in retinally normal and retinally degenerate rats.
    Poeggeler BH; Barlow-Walden LR; Reiter RJ; Saarela S; Menendez-Pelaez A; Yaga K; Manchester LC; Chen LD; Tan DX
    J Neurobiol; 1995 Sep; 28(1):1-8. PubMed ID: 8586959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between light intensity and the melatonin and drinking rhythms of rats.
    Rivest RW; Wurtman RJ
    Neuroendocrinology; 1983 Aug; 37(2):155-60. PubMed ID: 6684219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neither functional rod photoreceptors nor rod or cone outer segments are required for the photic inhibition of pineal melatonin.
    Lucas RJ; Foster RG
    Endocrinology; 1999 Apr; 140(4):1520-4. PubMed ID: 10098483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single 1- or 5-second light pulse at night inhibits hamster pineal melatonin.
    Reiter RJ; Joshi BN; Heinzeller T; Nürnberger F
    Endocrinology; 1986 May; 118(5):1906-9. PubMed ID: 3698901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary evidence for spectral opponency in the suppression of melatonin by light in humans.
    Figueiro MG; Bullough JD; Parsons RH; Rea MS
    Neuroreport; 2004 Feb; 15(2):313-6. PubMed ID: 15076759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans.
    Thapan K; Arendt J; Skene DJ
    J Physiol; 2001 Aug; 535(Pt 1):261-7. PubMed ID: 11507175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-wavelength enrichment of polychromatic light enhances human melatonin suppression potency.
    Brainard GC; Hanifin JP; Warfield B; Stone MK; James ME; Ayers M; Kubey A; Byrne B; Rollag M
    J Pineal Res; 2015 Apr; 58(3):352-61. PubMed ID: 25726691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-intensity red light suppresses melatonin.
    Hanifin JP; Stewart KT; Smith P; Tanner R; Rollag M; Brainard GC
    Chronobiol Int; 2006; 23(1-2):251-68. PubMed ID: 16687299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.