BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 34090105)

  • 1. Protective effects of cerium oxide nanoparticles in grapevine (Vitis vinifera L.) cv. Flame Seedless under salt stress conditions.
    Gohari G; Zareei E; Rostami H; Panahirad S; Kulak M; Farhadi H; Amini M; Martinez-Ballesta MDC; Fotopoulos V
    Ecotoxicol Environ Saf; 2021 Sep; 220():112402. PubMed ID: 34090105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Putrescine-functionalized carbon quantum dot (put-CQD) nanoparticles effectively prime grapevine (Vitis vinifera cv. 'Sultana') against salt stress.
    Gohari G; Panahirad S; Sadeghi M; Akbari A; Zareei E; Zahedi SM; Bahrami MK; Fotopoulos V
    BMC Plant Biol; 2021 Feb; 21(1):120. PubMed ID: 33639848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced tolerance to salinity stress in grapevine plants through application of carbon quantum dots functionalized by proline.
    Gohari G; Panahirad S; Sepehri N; Akbari A; Zahedi SM; Jafari H; Dadpour MR; Fotopoulos V
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):42877-42890. PubMed ID: 33829379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foliar Application of Cerium Oxide-Salicylic Acid Nanoparticles (CeO
    Hassanpouraghdam MB; Vojodi Mehrabani L; Bonabian Z; Aazami MA; Rasouli F; Feldo M; Strzemski M; Dresler S
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L.
    Rossi L; Zhang W; Lombardini L; Ma X
    Environ Pollut; 2016 Dec; 219():28-36. PubMed ID: 27661725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cerium oxide on rice seedlings as affected by co-exposure of cadmium and salt.
    Wang Y; Wang L; Ma C; Wang K; Hao Y; Chen Q; Mo Y; Rui Y
    Environ Pollut; 2019 Sep; 252(Pt B):1087-1096. PubMed ID: 31252106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K
    Liu J; Li G; Chen L; Gu J; Wu H; Li Z
    J Nanobiotechnology; 2021 May; 19(1):153. PubMed ID: 34034767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salt Stress Mitigation via the Foliar Application of Chitosan-Functionalized Selenium and Anatase Titanium Dioxide Nanoparticles in Stevia (
    Sheikhalipour M; Esmaielpour B; Gohari G; Haghighi M; Jafari H; Farhadi H; Kulak M; Kalisz A
    Molecules; 2021 Jul; 26(13):. PubMed ID: 34279430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression.
    El-Esawi MA; Alaraidh IA; Alsahli AA; Alamri SA; Ali HM; Alayafi AA
    Plant Physiol Biochem; 2018 Nov; 132():375-384. PubMed ID: 30268029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Putrescine-functionalized carbon quantum dot (put-CQD) nanoparticle: A promising stress-protecting agent against cadmium stress in grapevine (Vitis vinifera cv. Sultana).
    Panahirad S; Dadpour M; Gohari G; Akbari A; Mahdavinia G; Jafari H; Kulak M; Alcázar R; Fotopoulos V
    Plant Physiol Biochem; 2023 Apr; 197():107653. PubMed ID: 36965321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: Reactive oxygen species homeostasis and rhizobacteria regulation.
    Liu Y; Cao X; Yue L; Wang C; Tao M; Wang Z; Xing B
    Environ Pollut; 2022 Apr; 299():118900. PubMed ID: 35085650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foliar application of chitosan-putrescine nanoparticles (CTS-Put NPs) alleviates cadmium toxicity in grapevine (Vitis vinifera L.) cv. Sultana: modulation of antioxidant and photosynthetic status.
    Panahirad S; Gohari G; Mahdavinia G; Jafari H; Kulak M; Fotopoulos V; Alcázar R; Dadpour M
    BMC Plant Biol; 2023 Sep; 23(1):411. PubMed ID: 37667189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Titanium dioxide nanoparticles (TiO
    Gohari G; Mohammadi A; Akbari A; Panahirad S; Dadpour MR; Fotopoulos V; Kimura S
    Sci Rep; 2020 Jan; 10(1):912. PubMed ID: 31969653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity.
    Khan I; Raza MA; Awan SA; Shah GA; Rizwan M; Ali B; Tariq R; Hassan MJ; Alyemeni MN; Brestic M; Zhang X; Ali S; Huang L
    Plant Physiol Biochem; 2020 Nov; 156():221-232. PubMed ID: 32979796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of copper oxide and zinc oxide nanoparticles on photosynthesis and physiology of Raphanus sativus L. under salinity stress.
    Mahawar L; Živčák M; Barboricova M; Kovár M; Filaček A; Ferencova J; Vysoká DM; Brestič M
    Plant Physiol Biochem; 2024 Jan; 206():108281. PubMed ID: 38157834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of gibberellic acid on growth, biomass, and antioxidant defense system of wheat (Triticum aestivum L.) under cerium oxide nanoparticle stress.
    Iftikhar A; Rizwan M; Adrees M; Ali S; Ur Rehman MZ; Qayyum MF; Hussain A
    Environ Sci Pollut Res Int; 2020 Sep; 27(27):33809-33820. PubMed ID: 32535824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitigation of salinity impact in spearmint plants through the application of engineered chitosan-melatonin nanoparticles.
    Gohari G; Farhadi H; Panahirad S; Zareei E; Labib P; Jafari H; Mahdavinia G; Hassanpouraghdam MB; Ioannou A; Kulak M; Fotopoulos V
    Int J Biol Macromol; 2023 Jan; 224():893-907. PubMed ID: 36283550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wheat exposure to cerium oxide nanoparticles over three generations reveals transmissible changes in nutrition, biochemical pools, and response to soil N.
    Rico CM; Abolade OM; Wagner D; Lottes B; Rodriguez J; Biagioni R; Andersen CP
    J Hazard Mater; 2020 Feb; 384():121364. PubMed ID: 31607583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selenium protects wheat seedlings against salt stress-mediated oxidative damage by up-regulating antioxidants and osmolytes metabolism.
    Elkelish AA; Soliman MH; Alhaithloul HA; El-Esawi MA
    Plant Physiol Biochem; 2019 Apr; 137():144-153. PubMed ID: 30784986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foliar application of nanoceria attenuated cadmium stress in okra (Abelmoschus esculentus L.).
    Ogunkunle CO; Balogun GY; Olatunji OA; Han Z; Adeleye AS; Awe AA; Fatoba PO
    J Hazard Mater; 2023 Mar; 445():130567. PubMed ID: 37055974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.