These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34090324)

  • 21. The Essential Genome of
    Goodall ECA; Robinson A; Johnston IG; Jabbari S; Turner KA; Cunningham AF; Lund PA; Cole JA; Henderson IR
    mBio; 2018 Feb; 9(1):. PubMed ID: 29463657
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The design and analysis of transposon insertion sequencing experiments.
    Chao MC; Abel S; Davis BM; Waldor MK
    Nat Rev Microbiol; 2016 Feb; 14(2):119-28. PubMed ID: 26775926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elucidating Essential Genes in Plant-Associated Pseudomonas protegens Pf-5 Using Transposon Insertion Sequencing.
    Fabian BK; Foster C; Asher AJ; Elbourne LDH; Cain AK; Hassan KA; Tetu SG; Paulsen IT
    J Bacteriol; 2021 Mar; 203(7):. PubMed ID: 33257523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-Wide Identification by Transposon Insertion Sequencing of Escherichia coli K1 Genes Essential for
    McCarthy AJ; Stabler RA; Taylor PW
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29339415
    [No Abstract]   [Full Text] [Related]  

  • 25. Genome-Wide Mutagenesis in Borrelia burgdorferi.
    Lin T; Gao L
    Methods Mol Biol; 2018; 1690():201-223. PubMed ID: 29032547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probabilistic identification of bacterial essential genes via insertion density using TraDIS data with Tn5 libraries.
    Nlebedim VU; Chaudhuri RR; Walters K
    Bioinformatics; 2021 Dec; 37(23):4343-4349. PubMed ID: 34255819
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying essential genes in Mycobacterium tuberculosis by global phenotypic profiling.
    Long JE; DeJesus M; Ward D; Baker RE; Ioerger T; Sassetti CM
    Methods Mol Biol; 2015; 1279():79-95. PubMed ID: 25636614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generation of a Transposon Mutant Library in Staphylococcus aureus and Staphylococcus epidermidis Using bursa aurealis.
    Yajjala VK; Widhelm TJ; Endres JL; Fey PD; Bayles KW
    Methods Mol Biol; 2016; 1373():103-10. PubMed ID: 25682373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries.
    Barquist L; Mayho M; Cummins C; Cain AK; Boinett CJ; Page AJ; Langridge GC; Quail MA; Keane JA; Parkhill J
    Bioinformatics; 2016 Apr; 32(7):1109-11. PubMed ID: 26794317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-Wide Essentiality Analysis of
    Rifat D; Chen L; Kreiswirth BN; Nuermberger EL
    mBio; 2021 Jun; 12(3):e0104921. PubMed ID: 34126767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Construction of a Sequence-Defined Transposon Mutant Library in Staphylococcus aureus.
    Endres JL; Yajjala VK; Fey PD; Bayles KW
    Methods Mol Biol; 2019; 2016():29-37. PubMed ID: 31197706
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transposon Insertion Sequencing in a Clinical Isolate of Legionella pneumophila Identifies Essential Genes and Determinants of Natural Transformation.
    Hardy L; Juan PA; Coupat-Goutaland B; Charpentier X
    J Bacteriol; 2021 Jan; 203(3):. PubMed ID: 33168636
    [No Abstract]   [Full Text] [Related]  

  • 33. ARTIST: high-resolution genome-wide assessment of fitness using transposon-insertion sequencing.
    Pritchard JR; Chao MC; Abel S; Davis BM; Baranowski C; Zhang YJ; Rubin EJ; Waldor MK
    PLoS Genet; 2014 Nov; 10(11):e1004782. PubMed ID: 25375795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ITIS, a bioinformatics tool for accurate identification of transposon insertion sites using next-generation sequencing data.
    Jiang C; Chen C; Huang Z; Liu R; Verdier J
    BMC Bioinformatics; 2015 Mar; 16(1):72. PubMed ID: 25887332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Technical considerations for cost-effective transposon directed insertion-site sequencing (TraDIS).
    Kyono Y; Tolwinski M; Flowers SA
    Sci Rep; 2024 Mar; 14(1):6756. PubMed ID: 38514891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of Escherichia coli K1 Virulence Genes by Transposon-Directed Sequencing.
    McCarthy AJ; Taylor PW
    Methods Mol Biol; 2022; 2377():199-213. PubMed ID: 34709618
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transposon mutagenesis in oral
    Zhang Y; Li Z; Xu X; Peng X
    J Oral Microbiol; 2022; 14(1):2104951. PubMed ID: 35903085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enabling low-cost and robust essentiality studies with high-throughput transposon mutagenesis (HTTM).
    Champie A; De Grandmaison A; Jeanneau S; Grenier F; Jacques PÉ; Rodrigue S
    PLoS One; 2023; 18(4):e0283990. PubMed ID: 37040373
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bayesian analysis of gene essentiality based on sequencing of transposon insertion libraries.
    DeJesus MA; Zhang YJ; Sassetti CM; Rubin EJ; Sacchettini JC; Ioerger TR
    Bioinformatics; 2013 Mar; 29(6):695-703. PubMed ID: 23361328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TnseqDiff: identification of conditionally essential genes in transposon sequencing studies.
    Zhao L; Anderson MT; Wu W; T Mobley HL; Bachman MA
    BMC Bioinformatics; 2017 Jul; 18(1):326. PubMed ID: 28683752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.