BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34090337)

  • 1. Low nitrogen availability inhibits the phosphorus starvation response in maize (Zea mays ssp. mays L.).
    Torres-Rodríguez JV; Salazar-Vidal MN; Chávez Montes RA; Massange-Sánchez JA; Gillmor CS; Sawers RJH
    BMC Plant Biol; 2021 Jun; 21(1):259. PubMed ID: 34090337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate starvation of maize inhibits lateral root formation and alters gene expression in the lateral root primordium zone.
    Li Z; Xu C; Li K; Yan S; Qu X; Zhang J
    BMC Plant Biol; 2012 Jun; 12():89. PubMed ID: 22704465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium.
    Postma JA; Lynch JP
    Plant Physiol; 2011 Jul; 156(3):1190-201. PubMed ID: 21628631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing new insights into different phosphorus-starving responses between two maize (Zea mays) inbred lines by transcriptomic and proteomic studies.
    Jiang H; Zhang J; Han Z; Yang J; Ge C; Wu Q
    Sci Rep; 2017 Mar; 7():44294. PubMed ID: 28276535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency.
    Chen J; Wu FH; Shang YT; Wang WH; Hu WJ; Simon M; Liu X; Shangguan ZP; Zheng HL
    J Exp Bot; 2015 Nov; 66(21):6605-22. PubMed ID: 26208645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NO homeostasis is a key regulator of early nitrate perception and root elongation in maize.
    Manoli A; Begheldo M; Genre A; Lanfranco L; Trevisan S; Quaggiotti S
    J Exp Bot; 2014 Jan; 65(1):185-200. PubMed ID: 24220653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced frequency of lateral root branching improves N capture from low-N soils in maize.
    Zhan A; Lynch JP
    J Exp Bot; 2015 Apr; 66(7):2055-65. PubMed ID: 25680794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale physiological responses to nitrogen supplementation of maize hybrids.
    Ying S; Webster B; Gomez-Cano L; Shivaiah KK; Wang Q; Newton L; Grotewold E; Thompson A; Lundquist PK
    Plant Physiol; 2024 Apr; 195(1):879-899. PubMed ID: 37925649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic Dissection of Phosphorus Use Efficiency in a Maize Association Population under Two P Levels in the Field.
    Li D; Wang H; Wang M; Li G; Chen Z; Leiser WL; Weiß TM; Lu X; Wang M; Chen S; Chen F; Yuan L; Würschum T; Liu W
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress.
    York LM; Galindo-Castañeda T; Schussler JR; Lynch JP
    J Exp Bot; 2015 Apr; 66(8):2347-58. PubMed ID: 25795737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural variation in root traits identifies significant SNPs and candidate genes for phosphate deficiency tolerance in Zea mays L.
    Rajput P; Urfan M; Sharma S; Hakla HR; Nandan B; Das R; Roychowdhury R; Chowdhary SP
    Physiol Plant; 2024; 176(3):e14396. PubMed ID: 38887929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of the protein phosphatase 2A regulatory subunit a gene ZmPP2AA1 improves low phosphate tolerance by remodeling the root system architecture of maize.
    Wang J; Pei L; Jin Z; Zhang K; Zhang J
    PLoS One; 2017; 12(4):e0176538. PubMed ID: 28448624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of Thellungiella halophila H+-pyrophosphatase gene improves low phosphate tolerance in maize.
    Pei L; Wang J; Li K; Li Y; Li B; Gao F; Yang A
    PLoS One; 2012; 7(8):e43501. PubMed ID: 22952696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability.
    Postma JA; Dathe A; Lynch JP
    Plant Physiol; 2014 Oct; 166(2):590-602. PubMed ID: 24850860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crop root behavior coordinates phosphorus status and neighbors: from field studies to three-dimensional in situ reconstruction of root system architecture.
    Fang S; Gao X; Deng Y; Chen X; Liao H
    Plant Physiol; 2011 Mar; 155(3):1277-85. PubMed ID: 21224339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Greater lateral root branching density in maize improves phosphorus acquisition from low phosphorus soil.
    Jia X; Liu P; Lynch JP
    J Exp Bot; 2018 Sep; 69(20):4961-4970. PubMed ID: 30295904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability.
    Postma JA; Lynch JP
    Ann Bot; 2011 Apr; 107(5):829-41. PubMed ID: 20971728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversity in expression of phosphorus (P) responsive genes in Cucumis melo L.
    Fita A; Bowen HC; Hayden RM; Nuez F; Picó B; Hammond JP
    PLoS One; 2012; 7(4):e35387. PubMed ID: 22536378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZmARF1 positively regulates low phosphorus stress tolerance via modulating lateral root development in maize.
    Wu F; Yahaya BS; Gong Y; He B; Gou J; He Y; Li J; Kang Y; Xu J; Wang Q; Feng X; Tang Q; Liu Y; Lu Y
    PLoS Genet; 2024 Feb; 20(2):e1011135. PubMed ID: 38315718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. INDETERMINATE1 autonomously regulates phosphate homeostasis upstream of the miR399-ZmPHO2 signaling module in maize.
    Wang X; Yuan D; Liu Y; Liang Y; He J; Yang X; Hang R; Jia H; Mo B; Tian F; Chen X; Liu L
    Plant Cell; 2023 May; 35(6):2208-2231. PubMed ID: 36943781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.