BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34090337)

  • 21. Non-structural carbohydrates in maize with different nitrogen tolerance are affected by nitrogen addition.
    Wu Y; Zhao B; Li Q; Kong F; Du L; Zhou F; Shi H; Ke Y; Liu Q; Feng D; Yuan J
    PLoS One; 2019; 14(12):e0225753. PubMed ID: 31805168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The miRNA-mediated post-transcriptional regulation of maize response to nitrate.
    Trevisan S; Begheldo M; Nonis A; Quaggiotti S
    Plant Signal Behav; 2012 Jul; 7(7):822-6. PubMed ID: 22751313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Linking plant nutritional status to plant-microbe interactions.
    Carvalhais LC; Dennis PG; Fan B; Fedoseyenko D; Kierul K; Becker A; von Wiren N; Borriss R
    PLoS One; 2013; 8(7):e68555. PubMed ID: 23874669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-resolution quantification of root dynamics in split-nutrient rhizoslides reveals rapid and strong proliferation of maize roots in response to local high nitrogen.
    in 't Zandt D; Le Marié C; Kirchgessner N; Visser EJ; Hund A
    J Exp Bot; 2015 Sep; 66(18):5507-17. PubMed ID: 26105997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Root cortical aerenchyma enhances nitrogen acquisition from low-nitrogen soils in maize.
    Saengwilai P; Nord EA; Chimungu JG; Brown KM; Lynch JP
    Plant Physiol; 2014 Oct; 166(2):726-35. PubMed ID: 24891611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Autophagy Plays Prominent Roles in Amino Acid, Nucleotide, and Carbohydrate Metabolism during Fixed-Carbon Starvation in Maize.
    McLoughlin F; Marshall RS; Ding X; Chatt EC; Kirkpatrick LD; Augustine RC; Li F; Otegui MS; Vierstra RD
    Plant Cell; 2020 Sep; 32(9):2699-2724. PubMed ID: 32616663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heterogeneity in spatial P-distribution and foraging capability by Zea mays: effects of patch size and barriers to restrict root proliferation within a patch.
    Kume T; Sekiya N; Yano K
    Ann Bot; 2006 Dec; 98(6):1271-7. PubMed ID: 17008353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Altered expression of maize PLASTOCHRON1 enhances biomass and seed yield by extending cell division duration.
    Sun X; Cahill J; Van Hautegem T; Feys K; Whipple C; Novák O; Delbare S; Versteele C; Demuynck K; De Block J; Storme V; Claeys H; Van Lijsebettens M; Coussens G; Ljung K; De Vliegher A; Muszynski M; Inzé D; Nelissen H
    Nat Commun; 2017 Mar; 8():14752. PubMed ID: 28300078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Root Cortical Senescence Improves Growth under Suboptimal Availability of N, P, and K.
    Schneider HM; Postma JA; Wojciechowski T; Kuppe C; Lynch JP
    Plant Physiol; 2017 Aug; 174(4):2333-2347. PubMed ID: 28667049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fulvic acid alleviates the stress of low nitrogen on maize by promoting root development and nitrogen metabolism.
    Liang Y; Wang J; Wang Z; Hu D; Jiang Y; Han Y; Wang Y
    Physiol Plant; 2024; 176(2):e14249. PubMed ID: 38472657
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NO signaling is a key component of the root growth response to nitrate in Zea mays L.
    Trevisan S; Manoli A; Quaggiotti S
    Plant Signal Behav; 2014; 9(3):e28290. PubMed ID: 24613869
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative proteomic analyses provide new insights into low phosphorus stress responses in maize leaves.
    Zhang K; Liu H; Tao P; Chen H
    PLoS One; 2014; 9(5):e98215. PubMed ID: 24858307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The ZmNF-YC1-ZmAPRG pathway modulates low phosphorus tolerance in maize.
    Bai Y; Yang Q; Gan Y; Li M; Zhao Z; Dong E; Li C; He D; Mei X; Cai Y
    J Exp Bot; 2024 May; 75(10):2867-2881. PubMed ID: 38393826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Teosinte (Zea mays ssp parviglumis) growth and transcriptomic response to weed stress identifies similarities and differences between varieties and with modern maize varieties.
    Bruggeman SA; Horvath DP; Fennell AY; Gonzalez-Hernandez JL; Clay SA
    PLoS One; 2020; 15(8):e0237715. PubMed ID: 32822374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Root responses to abiotic stress: a comparative look at root system architecture in maize and sorghum.
    Hostetler AN; Morais de Sousa Tinoco S; Sparks EE
    J Exp Bot; 2024 Jan; 75(2):553-562. PubMed ID: 37798135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissecting nutrient-related co-expression networks in phosphate starved poplars.
    Kavka M; Polle A
    PLoS One; 2017; 12(2):e0171958. PubMed ID: 28222153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitrogen-Deficiency Stress Induces Protein Expression Differentially in Low-N Tolerant and Low-N Sensitive Maize Genotypes.
    Nazir M; Pandey R; Siddiqi TO; Ibrahim MM; Qureshi MI; Abraham G; Vengavasi K; Ahmad A
    Front Plant Sci; 2016; 7():298. PubMed ID: 27047497
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Shukla PS; Prithiviraj B
    Front Plant Sci; 2020; 11():601843. PubMed ID: 33488647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ancient Relatives of Modern Maize From the Center of Maize Domestication and Diversification Host Endophytic Bacteria That Confer Tolerance to Nitrogen Starvation.
    Dumigan CR; Muileboom J; Gregory J; Shrestha A; Hewedy OA; Raizada MN
    Front Plant Sci; 2021; 12():660673. PubMed ID: 34603345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Timing matters: Distinct effects of nitrogen and phosphorus fertilizer application timing on root system architecture responses.
    van Duijnen R; Uther H; Härdtle W; Temperton VM; Kumar A
    Plant Environ Interact; 2021 Aug; 2(4):194-205. PubMed ID: 37283701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.