These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 34090337)

  • 61. Effect of exogenous ammonium gluconate on growth, ion flux and antioxidant enzymes of maize (Zea Mays L.) seedlings under NaCl stress.
    Ding F; Wang R; Chen B
    Plant Biol (Stuttg); 2019 Jul; 21(4):643-651. PubMed ID: 30663821
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Transcriptome sequencing reveals the roles of transcription factors in modulating genotype by nitrogen interaction in maize.
    Chen Q; Liu Z; Wang B; Wang X; Lai J; Tian F
    Plant Cell Rep; 2015 Oct; 34(10):1761-71. PubMed ID: 26116219
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Expression and functional analysis of ZmDWF4, an ortholog of Arabidopsis DWF4 from maize (Zea mays L.).
    Liu T; Zhang J; Wang M; Wang Z; Li G; Qu L; Wang G
    Plant Cell Rep; 2007 Dec; 26(12):2091-9. PubMed ID: 17668219
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages.
    Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H
    PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nitrate and Ammonium Affect the Overall Maize Response to Nitrogen Availability by Triggering Specific and Common Transcriptional Signatures in Roots.
    Ravazzolo L; Trevisan S; Forestan C; Varotto S; Sut S; Dall'Acqua S; Malagoli M; Quaggiotti S
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31968691
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Abnormal physiological and molecular mutant phenotypes link chloroplast polynucleotide phosphorylase to the phosphorus deprivation response in Arabidopsis.
    Marchive C; Yehudai-Resheff S; Germain A; Fei Z; Jiang X; Judkins J; Wu H; Fernie AR; Fait A; Stern DB
    Plant Physiol; 2009 Oct; 151(2):905-24. PubMed ID: 19710229
    [TBL] [Abstract][Full Text] [Related]  

  • 67. High-resolution profile of transcriptomes reveals a role of alternative splicing for modulating response to nitrogen in maize.
    Wang Y; Xu J; Ge M; Ning L; Hu M; Zhao H
    BMC Genomics; 2020 May; 21(1):353. PubMed ID: 32393171
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Identification and comparative analysis of low phosphate tolerance-associated microRNAs in two maize genotypes.
    Pei L; Jin Z; Li K; Yin H; Wang J; Yang A
    Plant Physiol Biochem; 2013 Sep; 70():221-34. PubMed ID: 23792878
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess.
    Luo J; Zhou J; Li H; Shi W; Polle A; Lu M; Sun X; Luo ZB
    Tree Physiol; 2015 Dec; 35(12):1283-302. PubMed ID: 26420789
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Multiscale physiological responses to nitrogen supplementation of maize hybrids.
    Ying S; Webster B; Gomez-Cano L; Shivaiah KK; Wang Q; Newton L; Grotewold E; Thompson A; Lundquist PK
    Plant Physiol; 2024 Apr; 195(1):879-899. PubMed ID: 37925649
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Strand-specific RNA-Seq transcriptome analysis of genotypes with and without low-phosphorus tolerance provides novel insights into phosphorus-use efficiency in maize.
    Du Q; Wang K; Xu C; Zou C; Xie C; Xu Y; Li WX
    BMC Plant Biol; 2016 Oct; 16(1):222. PubMed ID: 27724863
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress.
    Zhang J; Yu H; Zhang Y; Wang Y; Li M; Zhang J; Duan L; Zhang M; Li Z
    J Exp Bot; 2016 Mar; 67(5):1339-55. PubMed ID: 26743432
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis.
    Li Z; Liu C; Zhang Y; Wang B; Ran Q; Zhang J
    J Exp Bot; 2019 Oct; 70(19):5471-5486. PubMed ID: 31267122
    [TBL] [Abstract][Full Text] [Related]  

  • 74. ZmHAK5 and ZmHAK1 function in K
    Qin YJ; Wu WH; Wang Y
    J Integr Plant Biol; 2019 Jun; 61(6):691-705. PubMed ID: 30548401
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The combination of compost or biochar with urea and NBPT can improve nitrogen-use efficiency in maize.
    Coelho MA; Fusconi R; Pinheiro L; Ramos IC; Ferreira AS
    An Acad Bras Cienc; 2018; 90(2):1695-1703. PubMed ID: 29898117
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Transcriptome analysis highlights changes in the leaves of maize plants cultivated in acidic soil containing toxic levels of Al(3+).
    Mattiello L; Begcy K; da Silva FR; Jorge RA; Menossi M
    Mol Biol Rep; 2014 Dec; 41(12):8107-16. PubMed ID: 25205121
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots.
    Maron LG; Kirst M; Mao C; Milner MJ; Menossi M; Kochian LV
    New Phytol; 2008; 179(1):116-128. PubMed ID: 18399934
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cross-Species Root Transcriptional Network Analysis Highlights Conserved Modules in Response to Nitrate between Maize and Sorghum.
    Du H; Ning L; He B; Wang Y; Ge M; Xu J; Zhao H
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32093344
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Non-syntenic genes drive RTCS-dependent regulation of the embryo transcriptome during formation of seminal root primordia in maize (Zea mays L.).
    Tai H; Opitz N; Lithio A; Lu X; Nettleton D; Hochholdinger F
    J Exp Bot; 2017 Jan; 68(3):403-414. PubMed ID: 28204533
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Expression of a putative high-affinity NO3- transporter and of an H+-ATPase in relation to whole plant nitrate transport physiology in two maize genotypes differently responsive to low nitrogen availability.
    Quaggiotti S; Ruperti B; Borsa P; Destro T; Malagoli M
    J Exp Bot; 2003 Mar; 54(384):1023-31. PubMed ID: 12598572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.