These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 34090590)

  • 1. Smartphone-assisted point-of-care colorimetric biosensor for the detection of urea via pH-mediated AgNPs growth.
    Choi CK; Shaban SM; Moon BS; Pyun DG; Kim DH
    Anal Chim Acta; 2021 Jul; 1170():338630. PubMed ID: 34090590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple smartphone-assisted paper-based colorimetric biosensor for the detection of urea adulteration in milk based on an environment-friendly pH-sensitive nanocomposite.
    Shalileh F; Sabahi H; Golbashy M; Dadmehr M; Hosseini M
    Anal Chim Acta; 2023 Dec; 1284():341935. PubMed ID: 37996167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colorimetric detection of Cr
    Sangsin S; Srivilai P; Tongraung P
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():119050. PubMed ID: 33075706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A smartphone-connected point-of-care photochemical biosensor for the determination of whole blood creatinine by differential optical signal readout.
    Cheng J; Guo J; Li X; Guo J
    Biosens Bioelectron; 2023 Sep; 235():115410. PubMed ID: 37236011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smartphone-assisted robust enzymes@MOFs-based paper biosensor for point-of-care detection.
    Kou X; Tong L; Shen Y; Zhu W; Yin L; Huang S; Zhu F; Chen G; Ouyang G
    Biosens Bioelectron; 2020 May; 156():112095. PubMed ID: 32174563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pH-responsive bioassay for sensitive colorimetric detection of adenosine triphosphate based on switchable DNA aptamer and metal ion-urease interactions.
    Zhu S; Yang Y; Li M; Yang Y; Li C; Yin Y
    Anal Bioanal Chem; 2021 Mar; 413(6):1533-1540. PubMed ID: 33462658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-resolution colorimetric immunoassay platform realized by coupling enzymatic multicolor generation with smartphone readout.
    Xie W; Lei L; Tian M; Zhang Z; Liu Y
    Analyst; 2018 Jun; 143(12):2901-2907. PubMed ID: 29808208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smartphone-based pH responsive 3-channel colorimetric biosensor for non-enzymatic multi-antibiotic residues.
    Zhou X; Fu S; Li J; Yi Y; Hu Y; Lu J; Yang C; Miao J; Xu Y
    Food Chem; 2023 Dec; 429():136953. PubMed ID: 37499511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smartphone-assisted colorimetric biosensor for on-site detection of Cr
    Zhang Y; Xue T; Cheng L; Wang J; Shen R; Zhang J
    Anal Chim Acta; 2022 Mar; 1199():339603. PubMed ID: 35227386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colorimetric detection of ammonia using smartphones based on localized surface plasmon resonance of silver nanoparticles.
    Amirjani A; Fatmehsari DH
    Talanta; 2018 Jan; 176():242-246. PubMed ID: 28917747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A colorimetric alkaline phosphatase biosensor based on p-aminophenol-mediated growth of silver nanoparticles.
    Shaban SM; Moon BS; Pyun DG; Kim DH
    Colloids Surf B Biointerfaces; 2021 Sep; 205():111835. PubMed ID: 33992822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A smartphone-assisted portable biosensor using laccase-mineral hybrid microflowers for colorimetric determination of epinephrine.
    Zhang M; Zhang Y; Yang C; Ma C; Tang J
    Talanta; 2021 Mar; 224():121840. PubMed ID: 33379058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AI-assisted smartphone-based colorimetric biosensor for visualized, rapid and sensitive detection of pathogenic bacteria.
    Cui R; Tang H; Huang Q; Ye T; Chen J; Huang Y; Hou C; Wang S; Ramadan S; Li B; Xu Y; Xu L; Li D
    Biosens Bioelectron; 2024 Sep; 259():116369. PubMed ID: 38781695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual Signal Amplification by Urease Catalysis and Silver Nanoparticles for Ultrasensitive Colorimetric Detection of Nucleic Acids.
    Sai J; Zhou L; Jiang L; Xue D; Pei R; Liu A; Xu L
    Anal Chem; 2023 Aug; 95(30):11359-11364. PubMed ID: 37464726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA biosensor combining single-wavelength colorimetry and a digital lock-in amplifier within a smartphone.
    Wu TH; Chang CC; Vaillant J; Bruyant A; Lin CW
    Lab Chip; 2016 Nov; 16(23):4527-4533. PubMed ID: 27778010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthogonal paper biosensor for mercury(II) combining bioluminescence and colorimetric smartphone detection.
    Lopreside A; Montali L; Wang B; Tassoni A; Ferri M; Calabretta MM; Michelini E
    Biosens Bioelectron; 2021 Dec; 194():113569. PubMed ID: 34438340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation, characterization and application of urease nanoparticles for construction of an improved potentiometric urea biosensor.
    Jakhar S; Pundir CS
    Biosens Bioelectron; 2018 Feb; 100():242-250. PubMed ID: 28926823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smartphone-assisted colorimetric sensing of enzyme-substrate system using pH-responsive gold nanoparticle assembly.
    Zou L; Mai C; Li M; Lai Y
    Anal Chim Acta; 2021 Sep; 1178():338804. PubMed ID: 34482869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Selective, Aptamer-Based, Ultrasensitive Nanogold Colorimetric Smartphone Readout for Detection of Cd(II).
    Xu L; Liang J; Wang Y; Ren S; Wu J; Zhou H; Gao Z
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31362377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A large response range reflectometric urea biosensor made from silica-gel nanoparticles.
    Alqasaimeh M; Heng LY; Ahmad M; Raj AS; Ling TL
    Sensors (Basel); 2014 Jul; 14(7):13186-209. PubMed ID: 25054632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.