BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 34090865)

  • 21. Personalized Nanoparticles for Cancer Therapy: A Call for Greater Precision.
    Sahakyan N; Haddad A; Richardson S; Forcha-Etieundem V; Christopher L; Alharbi H; Campbell R
    Anticancer Agents Med Chem; 2017; 17(8):1033-1039. PubMed ID: 28042778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological rationale for the design of polymeric anti-cancer nanomedicines.
    Zhou Y; Kopeček J
    J Drug Target; 2013 Jan; 21(1):1-26. PubMed ID: 23009337
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tumor microenvironment-regulating nanomedicine design to fight multi-drug resistant tumors.
    Xu Q; Lan X; Lin H; Xi Q; Wang M; Quan X; Yao G; Yu Z; Wang Y; Yu M
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023 Jan; 15(1):e1842. PubMed ID: 35989568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?
    Danhier F
    J Control Release; 2016 Dec; 244(Pt A):108-121. PubMed ID: 27871992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combining Nanomedicine and Immunotherapy.
    Shi Y; Lammers T
    Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of cancer metabolism on therapy resistance - Clinical implications.
    Gonçalves AC; Richiardone E; Jorge J; Polónia B; Xavier CPR; Salaroglio IC; Riganti C; Vasconcelos MH; Corbet C; Sarmento-Ribeiro AB
    Drug Resist Updat; 2021 Dec; 59():100797. PubMed ID: 34955385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carrier-Free Nanomedicine for Cancer Immunotherapy.
    Fu Y; Bian X; Li P; Huang Y; Li C
    J Biomed Nanotechnol; 2022 Apr; 18(4):939-956. PubMed ID: 35854464
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy.
    Zhou Q; Dong C; Fan W; Jiang H; Xiang J; Qiu N; Piao Y; Xie T; Luo Y; Li Z; Liu F; Shen Y
    Biomaterials; 2020 May; 240():119902. PubMed ID: 32105817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics.
    Overchuk M; Zheng G
    Biomaterials; 2018 Feb; 156():217-237. PubMed ID: 29207323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Smart Nanosystems for Overcoming Multiple Biological Barriers in Cancer Nanomedicines Transport: Design Principles, Progress, and Challenges.
    Lin G; Zhou J; Cheng H; Liu G
    Small; 2023 Jul; 19(28):e2207973. PubMed ID: 36971279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges.
    Martin JD; Cabral H; Stylianopoulos T; Jain RK
    Nat Rev Clin Oncol; 2020 Apr; 17(4):251-266. PubMed ID: 32034288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tumor-Targeted Nanomedicine for Immunotherapy.
    Cabral H; Kinoh H; Kataoka K
    Acc Chem Res; 2020 Dec; 53(12):2765-2776. PubMed ID: 33161717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoparticles Targeting and Remodeling Tumor Microenvironment for Cancer Theranostics.
    Lin G; Chen S; Mi P
    J Biomed Nanotechnol; 2018 Jul; 14(7):1189-1207. PubMed ID: 29944095
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanotherapy Targeting the Tumor Microenvironment.
    Gong BS; Wang R; Xu HX; Miao MY; Yao ZZ
    Curr Cancer Drug Targets; 2019; 19(7):525-533. PubMed ID: 30569855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From Passive Targeting to Personalized Nanomedicine: Multidimensional Insights on Nanoparticles' Interaction with the Tumor Microenvironment.
    Sebak AA; El-Shenawy BM; El-Safy S; El-Shazly M
    Curr Pharm Biotechnol; 2021; 22(11):1444-1465. PubMed ID: 33308126
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emulating interactions between microorganisms and tumor microenvironment to develop cancer theranostics.
    Jiang T; Yang T; Chen Y; Miao Y; Xu Y; Jiang H; Yang M; Mao C
    Theranostics; 2022; 12(6):2833-2859. PubMed ID: 35401838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stimuli-activatable nanomedicines for chemodynamic therapy of cancer.
    Wang W; Jin Y; Xu Z; Liu X; Bajwa SZ; Khan WS; Yu H
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Jul; 12(4):e1614. PubMed ID: 32011108
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment.
    Sun B; Hyun H; Li LT; Wang AZ
    Acta Pharmacol Sin; 2020 Jul; 41(7):970-985. PubMed ID: 32424240
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance.
    Bar-Zeev M; Livney YD; Assaraf YG
    Drug Resist Updat; 2017 Mar; 31():15-30. PubMed ID: 28867241
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine.
    Du JZ; Li HJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2848-2856. PubMed ID: 30346728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.