BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 34090865)

  • 41. Nanomedicine in cancer therapy.
    Fan D; Cao Y; Cao M; Wang Y; Cao Y; Gong T
    Signal Transduct Target Ther; 2023 Aug; 8(1):293. PubMed ID: 37544972
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Engineering metal-phenolic networks for enhancing cancer therapy by tumor microenvironment modulation.
    Xie L; Li J; Wang L; Dai Y
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(3):e1864. PubMed ID: 36333962
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tumor-Targeting Glycol Chitosan Nanoparticles for Cancer Heterogeneity.
    Ryu JH; Yoon HY; Sun IC; Kwon IC; Kim K
    Adv Mater; 2020 Dec; 32(51):e2002197. PubMed ID: 33051905
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tumor-associated macrophages, nanomedicine and imaging: the axis of success in the future of cancer immunotherapy.
    Zanganeh S; Spitler R; Hutter G; Ho JQ; Pauliah M; Mahmoudi M
    Immunotherapy; 2017 Sep; 9(10):819-835. PubMed ID: 28877626
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multifaceted Roles of Copper Ions in Anticancer Nanomedicine.
    Yang S; Song Y; Hu Y; Chen H; Yang D; Song X
    Adv Healthc Mater; 2023 Sep; 12(23):e2300410. PubMed ID: 37027332
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Artificial intelligence aids in development of nanomedicines for cancer management.
    Tan P; Chen X; Zhang H; Wei Q; Luo K
    Semin Cancer Biol; 2023 Feb; 89():61-75. PubMed ID: 36682438
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancement of tumour penetration by nanomedicines through strategies based on transport processes and barriers.
    Yang H; Tong Z; Sun S; Mao Z
    J Control Release; 2020 Dec; 328():28-44. PubMed ID: 32858072
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanomedicines for cancer therapy: current status, challenges and future prospects.
    Bor G; Mat Azmi ID; Yaghmur A
    Ther Deliv; 2019 Feb; 10(2):113-132. PubMed ID: 30678550
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanotherapeutic approaches targeting angiogenesis and immune dysfunction in tumor microenvironment.
    Hameed S; Bhattarai P; Dai Z
    Sci China Life Sci; 2018 Apr; 61(4):380-391. PubMed ID: 29607461
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DePEGylation strategies to increase cancer nanomedicine efficacy.
    Kong L; Campbell F; Kros A
    Nanoscale Horiz; 2019 Mar; 4(2):378-387. PubMed ID: 32254090
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Breaking the niche: multidimensional nanotherapeutics for tumor microenvironment modulation.
    Swetha KL; Maravajjala KS; Li SD; Singh MS; Roy A
    Drug Deliv Transl Res; 2023 Jan; 13(1):105-134. PubMed ID: 35697894
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A review.
    Thakkar S; Sharma D; Kalia K; Tekade RK
    Acta Biomater; 2020 Jan; 101():43-68. PubMed ID: 31518706
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tumor-targeted miRNA nanomedicine for overcoming challenges in immunity and therapeutic resistance.
    Parayath NN; Gandham SK; Amiji MM
    Nanomedicine (Lond); 2022 Aug; 17(19):1355-1373. PubMed ID: 36255330
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Precise design strategies of nanomedicine for improving cancer therapeutic efficacy using subcellular targeting.
    Fu X; Shi Y; Qi T; Qiu S; Huang Y; Zhao X; Sun Q; Lin G
    Signal Transduct Target Ther; 2020 Nov; 5(1):262. PubMed ID: 33154350
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Targeting cancer cells in the tumor microenvironment: opportunities and challenges in combinatorial nanomedicine.
    Linton SS; Sherwood SG; Drews KC; Kester M
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2016; 8(2):208-22. PubMed ID: 26153136
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using functional nanomaterials to target and regulate the tumor microenvironment: diagnostic and therapeutic applications.
    Ji T; Zhao Y; Ding Y; Nie G
    Adv Mater; 2013 Jul; 25(26):3508-25. PubMed ID: 23703805
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Receptor-based targeting of engineered nanocarrier against solid tumors: Recent progress and challenges ahead.
    Akhter MH; Beg S; Tarique M; Malik A; Afaq S; Choudhry H; Hosawi S
    Biochim Biophys Acta Gen Subj; 2021 Feb; 1865(2):129777. PubMed ID: 33130062
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Surface-Engineered Cancer Nanomedicine: Rational Design and Recent Progress.
    Ahmad J; Ameeduzzafar ; Ahmad MZ; Akhter H
    Curr Pharm Des; 2020; 26(11):1181-1190. PubMed ID: 32056517
    [TBL] [Abstract][Full Text] [Related]  

  • 59. P-glycoprotein-targeted photodynamic therapy boosts cancer nanomedicine by priming tumor microenvironment.
    Mao C; Li F; Zhao Y; Debinski W; Ming X
    Theranostics; 2018; 8(22):6274-6290. PubMed ID: 30613297
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unraveling the role of Intralipid in suppressing off-target delivery and augmenting the therapeutic effects of anticancer nanomedicines.
    Islam R; Gao S; Islam W; Ĺ ubr V; Zhou JR; Yokomizo K; Etrych T; Maeda H; Fang J
    Acta Biomater; 2021 May; 126():372-383. PubMed ID: 33774199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.