These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34090901)

  • 1. Mimicking Low pH Virus Inactivation Used in Antibody Manufacturing Processes: Effect of Processing Conditions and Biophysical Properties on Antibody Aggregation and Particle Formation.
    Kim NA; Kar S; Li Z; Das TK; Carpenter JF
    J Pharm Sci; 2021 Sep; 110(9):3188-3199. PubMed ID: 34090901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Subvisible Particles in Biotherapeutic Prefilled Syringes: The Role of Polysorbate and Protein on the Formation of Silicone Oil and Protein Subvisible Particles After Drop Shock.
    Jiao N; Barnett GV; Christian TR; Narhi LO; Joh NH; Joubert MK; Cao S
    J Pharm Sci; 2020 Jan; 109(1):640-645. PubMed ID: 31689431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processing Impact on Monoclonal Antibody Drug Products: Protein Subvisible Particulate Formation Induced by Grinding Stress.
    Gikanga B; Eisner DR; Ovadia R; Day ES; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2017; 71(3):172-188. PubMed ID: 27789805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic Investigation on Grinding-Induced Subvisible Particle Formation during Mixing and Filling of Monoclonal Antibody Formulations.
    Gikanga B; Hui A; Maa YF
    PDA J Pharm Sci Technol; 2018; 72(2):117-133. PubMed ID: 29030532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of ionic strength for X-MuLV inactivation by low pH treatment for monoclonal antibody purification.
    Daya J; Cusick V; Mattila J
    Biotechnol Bioeng; 2023 Jun; 120(6):1605-1613. PubMed ID: 36924035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein aggregation and mitigation strategy in low pH viral inactivation for monoclonal antibody purification.
    Jin W; Xing Z; Song Y; Huang C; Xu X; Ghose S; Li ZJ
    MAbs; 2019; 11(8):1479-1491. PubMed ID: 31441367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Tubing Type, Formulation, and Postpumping Agitation on Nanoparticle and Microparticle Formation in Intravenous Immunoglobulin Solutions Processed With a Peristaltic Filling Pump.
    Her C; Carpenter JF
    J Pharm Sci; 2020 Jan; 109(1):739-749. PubMed ID: 31108051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of protein particle formation during ultrafiltration/diafiltration through interfacial protection.
    Callahan DJ; Stanley B; Li Y
    J Pharm Sci; 2014 Mar; 103(3):862-9. PubMed ID: 24449131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developability Assessments of Monoclonal Antibody Candidates to Minimize Aggregation During Large-Scale Ultrafiltration and Diafiltration (UF-DF) Processing.
    Whitaker N; Pace SE; Merritt K; Tadros M; Khossravi M; Deshmukh S; Cheng Y; Joshi SB; Volkin DB; Dhar P
    J Pharm Sci; 2022 Nov; 111(11):2998-3008. PubMed ID: 35940242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polysorbates versus Hydroxypropyl Beta-Cyclodextrin (HPβCD): Comparative Study on Excipient Stability and Stabilization Benefits on Monoclonal Antibodies.
    Zhang H; Hong S; Tan SSK; Peng T; Goh LYH; Lam KH; Chow KT; Gokhale R
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IgG1 aggregation and particle formation induced by silicone-water interfaces on siliconized borosilicate glass beads: a model for siliconized primary containers.
    Basu P; Krishnan S; Thirumangalathu R; Randolph TW; Carpenter JF
    J Pharm Sci; 2013 Mar; 102(3):852-65. PubMed ID: 23280943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Inherent Particles and Mechanism of Thermal Stress Induced Particle Formation in HSV-2 Viral Vaccine Candidate.
    Li L; Kirkitadze M; Bhandal K; Roque C; Yang E; Carpick B; Rahman N
    Curr Pharm Biotechnol; 2017 Nov; 18(8):638-647. PubMed ID: 28914197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational and Colloidal Stabilities of Isolated Constant Domains of Human Immunoglobulin G and Their Impact on Antibody Aggregation under Acidic Conditions.
    Yageta S; Lauer TM; Trout BL; Honda S
    Mol Pharm; 2015 May; 12(5):1443-55. PubMed ID: 25871775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What Makes Polysorbate Functional? Impact of Polysorbate 80 Grade and Quality on IgG Stability During Mechanical Stress.
    Grabarek AD; Bozic U; Rousel J; Menzen T; Kranz W; Wuchner K; Jiskoot W; Hawe A
    J Pharm Sci; 2020 Jan; 109(1):871-880. PubMed ID: 31614127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Polysorbate 80 Grade on the Interfacial Properties and Interfacial Stress Induced Subvisible Particle Formation in Monoclonal Antibodies.
    Vaclaw C; Merritt K; Pringle V; Whitaker N; Gokhale M; Carvalho T; Pan D; Liu Z; Bindra D; Khossravi M; Bolgar M; Volkin DB; Ogunyankin MO; Dhar P
    J Pharm Sci; 2021 Feb; 110(2):746-759. PubMed ID: 32987092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light exacerbates local and global effects induced by pH unfolding of Ipilimumab.
    Rizzotto E; Inciardi I; Fongaro B; Trolese P; Miolo G; Polverino de Laureto P
    Eur J Pharm Biopharm; 2024 Aug; 201():114387. PubMed ID: 38944210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Process analytical technology in continuous processing: Model-based real time control of pH between capture chromatography and viral inactivation for monoclonal antibody production.
    Thakur G; Ghumade P; Rathore AS
    J Chromatogr A; 2021 Nov; 1658():462614. PubMed ID: 34656843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CFD model for predicting protein aggregation in low-pH virial inactivation for mAb production.
    Xing Z; Jin W; Xu X; Song Y; Huang C; Borys MC; Ghose S; Li ZJ
    Biotechnol Bioeng; 2020 Nov; 117(11):3400-3412. PubMed ID: 32672835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible NaCl-induced aggregation of a monoclonal antibody at low pH: Characterization of aggregates and factors affecting aggregation.
    Bickel F; Herold EM; Signes A; Romeijn S; Jiskoot W; Kiefer H
    Eur J Pharm Biopharm; 2016 Oct; 107():310-20. PubMed ID: 27449627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gelation of a monoclonal antibody at the silicone oil-water interface and subsequent rupture of the interfacial gel results in aggregation and particle formation.
    Mehta SB; Lewus R; Bee JS; Randolph TW; Carpenter JF
    J Pharm Sci; 2015 Apr; 104(4):1282-90. PubMed ID: 25639229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.