These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 34090947)
1. Glycolate production by a Chlamydomonas reinhardtii mutant lacking carbon-concentrating mechanism. Yun EJ; Zhang GC; Atkinson C; Lane S; Liu JJ; Ort DR; Jin YS J Biotechnol; 2021 Jul; 335():39-46. PubMed ID: 34090947 [TBL] [Abstract][Full Text] [Related]
2. Crossing and selection of Chlamydomonas reinhardtii strains for biotechnological glycolate production. Schad A; Rössler S; Nagel R; Wagner H; Wilhelm C Appl Microbiol Biotechnol; 2022 May; 106(9-10):3539-3554. PubMed ID: 35511277 [TBL] [Abstract][Full Text] [Related]
3. The Cia5 gene controls formation of the carbon concentrating mechanism in Chlamydomonas reinhardtii. Xiang Y; Zhang J; Weeks DP Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5341-6. PubMed ID: 11309511 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome-wide changes in Chlamydomonas reinhardtii gene expression regulated by carbon dioxide and the CO2-concentrating mechanism regulator CIA5/CCM1. Fang W; Si Y; Douglass S; Casero D; Merchant SS; Pellegrini M; Ladunga I; Liu P; Spalding MH Plant Cell; 2012 May; 24(5):1876-93. PubMed ID: 22634760 [TBL] [Abstract][Full Text] [Related]
5. Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Fukuzawa H; Miura K; Ishizaki K; Kucho KI; Saito T; Kohinata T; Ohyama K Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5347-52. PubMed ID: 11287669 [TBL] [Abstract][Full Text] [Related]
6. Engineering microalgae for robust glycolate biosynthesis: Targeted knockout of hydroxypyruvate reductase 1 combined with optimized culture conditions enhance glycolate production in Chlamydomonas reinhardtii. Yan S; Hou Y; Cui M; Cheng T; Lu S; Liu Z; Deng B; Liu W; Shi M; Lin L; Yu L; Zhao L Bioresour Technol; 2024 Nov; 412():131372. PubMed ID: 39209231 [TBL] [Abstract][Full Text] [Related]
7. Orchestral manoeuvres in the light: crosstalk needed for regulation of the Chlamydomonas carbon concentration mechanism. Santhanagopalan I; Wong R; Mathur T; Griffiths H J Exp Bot; 2021 Jun; 72(13):4604-4624. PubMed ID: 33893473 [TBL] [Abstract][Full Text] [Related]
8. Photorespiratory glycolate oxidase is essential for the survival of the red alga Cyanidioschyzon merolae under ambient CO2 conditions. Rademacher N; Kern R; Fujiwara T; Mettler-Altmann T; Miyagishima SY; Hagemann M; Eisenhut M; Weber AP J Exp Bot; 2016 May; 67(10):3165-75. PubMed ID: 26994474 [TBL] [Abstract][Full Text] [Related]
9. Thylakoid localized bestrophin-like proteins are essential for the CO Mukherjee A; Lau CS; Walker CE; Rai AK; Prejean CI; Yates G; Emrich-Mills T; Lemoine SG; Vinyard DJ; Mackinder LCM; Moroney JV Proc Natl Acad Sci U S A; 2019 Aug; 116(34):16915-16920. PubMed ID: 31391312 [TBL] [Abstract][Full Text] [Related]
10. The Chlamydomonas reinhardtii proteins Ccp1 and Ccp2 are required for long-term growth, but are not necessary for efficient photosynthesis, in a low-CO2 environment. Pollock SV; Prout DL; Godfrey AC; Lemaire SD; Moroney JV Plant Mol Biol; 2004 Sep; 56(1):125-32. PubMed ID: 15604732 [TBL] [Abstract][Full Text] [Related]
11. Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low-CO(2) atmosphere. Pollock SV; Colombo SL; Prout DL; Godfrey AC; Moroney JV Plant Physiol; 2003 Dec; 133(4):1854-61. PubMed ID: 14605215 [TBL] [Abstract][Full Text] [Related]
12. Knockout of Asadian M; Saadati M; Bajestani FB; Beardall J; Abdolahadi F; Mahdinezhad N J Genet; 2022; 101():. PubMed ID: 35129125 [TBL] [Abstract][Full Text] [Related]
13. The Chlamydomonas CO Mackinder LCM New Phytol; 2018 Jan; 217(1):54-61. PubMed ID: 28833179 [TBL] [Abstract][Full Text] [Related]
14. Glycolate from microalgae: an efficient carbon source for biotechnological applications. Taubert A; Jakob T; Wilhelm C Plant Biotechnol J; 2019 Aug; 17(8):1538-1546. PubMed ID: 30637910 [TBL] [Abstract][Full Text] [Related]
16. Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analyses. Yamano T; Fukuzawa H J Basic Microbiol; 2009 Feb; 49(1):42-51. PubMed ID: 19253331 [TBL] [Abstract][Full Text] [Related]
17. Methane production from glycolate excreting algae as a new concept in the production of biofuels. Günther A; Jakob T; Goss R; König S; Spindler D; Räbiger N; John S; Heithoff S; Fresewinkel M; Posten C; Wilhelm C Bioresour Technol; 2012 Oct; 121():454-7. PubMed ID: 22850169 [TBL] [Abstract][Full Text] [Related]
18. Coordination between photorespiration and carbon concentrating mechanism in Chlamydomonas reinhardtii: transcript and protein changes during light-dark diurnal cycles and mixotrophy conditions. Tirumani S; Gothandam KM; J Rao B Protoplasma; 2019 Jan; 256(1):117-130. PubMed ID: 29987443 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial carbonic anhydrases are needed for optimal photosynthesis at low CO2 levels in Chlamydomonas. Rai AK; Chen T; Moroney JV Plant Physiol; 2021 Nov; 187(3):1387-1398. PubMed ID: 34618049 [TBL] [Abstract][Full Text] [Related]
20. Acclimation of Chlamydomonas to changing carbon availability. Spalding MH; Van K; Wang Y; Nakamura Y Funct Plant Biol; 2002 Apr; 29(3):221-230. PubMed ID: 32689469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]