BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 34090947)

  • 21. Mitochondrial glycolate oxidation contributes to photorespiration in higher plants.
    Niessen M; Thiruveedhi K; Rosenkranz R; Kebeish R; Hirsch HJ; Kreuzaler F; Peterhänsel C
    J Exp Bot; 2007; 58(10):2709-15. PubMed ID: 17595195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field.
    South PF; Cavanagh AP; Liu HW; Ort DR
    Science; 2019 Jan; 363(6422):eaat9077. PubMed ID: 30606819
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High glycolate oxidase activity is required for survival of maize in normal air.
    Zelitch I; Schultes NP; Peterson RB; Brown P; Brutnell TP
    Plant Physiol; 2009 Jan; 149(1):195-204. PubMed ID: 18805949
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and regulation of high light-induced genes in Chlamydomonas reinhardtii.
    Im CS; Grossman AR
    Plant J; 2002 May; 30(3):301-13. PubMed ID: 12000678
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii.
    Boyle NR; Morgan JA
    BMC Syst Biol; 2009 Jan; 3():4. PubMed ID: 19128495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of the major paths of carbon in photorespiratory mutants of synechocystis.
    Huege J; Goetze J; Schwarz D; Bauwe H; Hagemann M; Kopka J
    PLoS One; 2011 Jan; 6(1):e16278. PubMed ID: 21283704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation.
    Winck FV; Arvidsson S; Riaño-Pachón DM; Hempel S; Koseska A; Nikoloski Z; Urbina Gomez DA; Rupprecht J; Mueller-Roeber B
    PLoS One; 2013; 8(11):e79909. PubMed ID: 24224019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Light and low-CO2-dependent LCIB-LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii.
    Yamano T; Tsujikawa T; Hatano K; Ozawa S; Takahashi Y; Fukuzawa H
    Plant Cell Physiol; 2010 Sep; 51(9):1453-68. PubMed ID: 20660228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photosynthetic characteristics of a multicellular green alga Volvox carteri in response to external CO2 levels possibly regulated by CCM1/CIA5 ortholog.
    Yamano T; Fujita A; Fukuzawa H
    Photosynth Res; 2011 Sep; 109(1-3):151-9. PubMed ID: 21253860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and characterization of a solute carrier, CIA8, involved in inorganic carbon acclimation in Chlamydomonas reinhardtii.
    Machingura MC; Bajsa-Hirschel J; Laborde SM; Schwartzenburg JB; Mukherjee B; Mukherjee A; Pollock SV; Förster B; Price GD; Moroney JV
    J Exp Bot; 2017 Jun; 68(14):3879-3890. PubMed ID: 28633328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The carbon concentrating mechanism in Chlamydomonas reinhardtii: finding the missing pieces.
    Jungnick N; Ma Y; Mukherjee B; Cronan JC; Speed DJ; Laborde SM; Longstreth DJ; Moroney JV
    Photosynth Res; 2014 Sep; 121(2-3):159-73. PubMed ID: 24752527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light-independent regulation of algal photoprotection by CO
    Ruiz-Sola MÁ; Flori S; Yuan Y; Villain G; Sanz-Luque E; Redekop P; Tokutsu R; Küken A; Tsichla A; Kepesidis G; Allorent G; Arend M; Iacono F; Finazzi G; Hippler M; Nikoloski Z; Minagawa J; Grossman AR; Petroutsos D
    Nat Commun; 2023 Apr; 14(1):1977. PubMed ID: 37031262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components.
    Atkinson N; Feike D; Mackinder LC; Meyer MT; Griffiths H; Jonikas MC; Smith AM; McCormick AJ
    Plant Biotechnol J; 2016 May; 14(5):1302-15. PubMed ID: 26538195
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and characterization of novel high-CO2-requiring mutants of Chlamydomonas reinhardtii.
    Wang L; Yamano T; Kajikawa M; Hirono M; Fukuzawa H
    Photosynth Res; 2014 Sep; 121(2-3):175-84. PubMed ID: 24549931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of glycolate and D-lactate metabolism in a Chlamydomonas reinhardtii mutant deficient in mitochondrial respiration.
    Husic DW; Tolbert NE
    Proc Natl Acad Sci U S A; 1987 Mar; 84(6):1555-9. PubMed ID: 16578800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intracellular carbonic anhydrase is essential to photosynthesis in Chlamydomonas reinhardtii at atmospheric levels of CO2. Demonstration via genomic complementation of the high-CO2-requiring mutant ca-1.
    Funke RP; Kovar JL; Weeks DP
    Plant Physiol; 1997 May; 114(1):237-44. PubMed ID: 9159949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced carbon capture and utilization (CCU) using heterologous carbonic anhydrase in Chlamydomonas reinhardtii for lutein and lipid production.
    Lin JY; Sri Wahyu Effendi S; Ng IS
    Bioresour Technol; 2022 May; 351():127009. PubMed ID: 35304253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in Photorespiratory Enzyme Activity in Response to Limiting CO(2) in Chlamydomonas reinhardtii.
    Marek LF; Spalding MH
    Plant Physiol; 1991 Sep; 97(1):420-5. PubMed ID: 16668403
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glycolate Metabolism and Excretion by Chlamydomonas reinhardtii.
    Moroney JV; Wilson BJ; Tolbert NE
    Plant Physiol; 1986 Nov; 82(3):821-6. PubMed ID: 16665116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of photorespiration in immobilized Chlamydomonas reinhardtii cells.
    Garbayo I; Forján E; Salguero A; Cuaresma M; Vega JM; Vílchez C
    Biotechnol Lett; 2005 Feb; 27(4):265-7. PubMed ID: 15742148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.