BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34091153)

  • 1. Investigation into early stage fatigue-damage accumulation in glutaraldehyde-fixed bovine pericardium using a novel equibiaxial bulge inflation system.
    Whelan A; O'Brien G; Szagdaj A; O'Reilly D; Lally C
    J Mech Behav Biomed Mater; 2021 Sep; 121():104588. PubMed ID: 34091153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagen fibre-mediated mechanical damage increases calcification of bovine pericardium for use in bioprosthetic heart valves.
    Whelan A; Williams E; Fitzpatrick E; Murphy BP; Gunning PS; O'Reilly D; Lally C
    Acta Biomater; 2021 Jul; 128():384-392. PubMed ID: 33945880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bovine Pericardium of High Fibre Dispersion Has High Fatigue Life and Increased Collagen Content; Potentially an Untapped Source of Heart Valve Leaflet Tissue.
    Whelan A; Williams E; Nolan DR; Murphy B; Gunning PS; O'Reilly D; Lally C
    Ann Biomed Eng; 2021 Mar; 49(3):1022-1032. PubMed ID: 33063231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic elasticity and strength of glutaraldehyde fixed bovine pericardium for use in pericardial bioprosthetic valves.
    Zioupos P; Barbenel JC; Fisher J
    J Biomed Mater Res; 1994 Jan; 28(1):49-57. PubMed ID: 8126028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biaxial mechanical/structural effects of equibiaxial strain during crosslinking of bovine pericardial xenograft materials.
    Langdon SE; Chernecky R; Pereira CA; Abdulla D; Lee JM
    Biomaterials; 1999 Jan; 20(2):137-53. PubMed ID: 10022783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collagen fibre orientation and dispersion govern ultimate tensile strength, stiffness and the fatigue performance of bovine pericardium.
    Whelan A; Duffy J; Gaul RT; O'Reilly D; Nolan DR; Gunning P; Lally C; Murphy BP
    J Mech Behav Biomed Mater; 2019 Feb; 90():54-60. PubMed ID: 30343171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of long-term fatigue damage in bioprosthetic heart valves: effects of leaflet and stent elastic properties.
    Martin C; Sun W
    Biomech Model Mechanobiol; 2014 Aug; 13(4):759-70. PubMed ID: 24092257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping of glutaraldehyde-treated bovine pericardium and tissue selection for bioprosthetic heart valves.
    Simionescu D; Simionescu A; Deac R
    J Biomed Mater Res; 1993 Jun; 27(6):697-704. PubMed ID: 8408100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue analysis of clinical bioprosthetic heart valves manufactured using photooxidized bovine pericardium.
    Butterfield M; Fisher J
    J Heart Valve Dis; 2000 Jan; 9(1):161-6; discussion 167. PubMed ID: 10678391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of tensile properties of xenopericardium from three animal species and finite element analysis for bioprosthetic heart valve tissue.
    Rassoli A; Fatouraee N; Guidoin R; Zhang Z
    Artif Organs; 2020 Mar; 44(3):278-287. PubMed ID: 31386771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the response of exogenously crosslinked tissue to cyclic loading: The effects of permanent set.
    Zhang W; Sacks MS
    J Mech Behav Biomed Mater; 2017 Nov; 75():336-350. PubMed ID: 28780254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcification of bovine pericardium used in cardiac valve bioprostheses. Implications for the mechanisms of bioprosthetic tissue mineralization.
    Schoen FJ; Tsao JW; Levy RJ
    Am J Pathol; 1986 Apr; 123(1):134-45. PubMed ID: 2421577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress state during fixation determines susceptibility to fatigue-linked biodegradation in bioprosthetic heart valve materials.
    Margueratt SD; Lee JM
    Biomed Sci Instrum; 2002; 38():145-50. PubMed ID: 12085592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of long-term fatigue damage of soft tissue with stress softening and permanent set effects.
    Martin C; Sun W
    Biomech Model Mechanobiol; 2013 Aug; 12(4):645-55. PubMed ID: 22945802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility evaluation of a new pericardial bioprosthesis with dye mediated photo-oxidized bovine pericardial tissue.
    Bianco RW; Phillips R; Mrachek J; Witson J
    J Heart Valve Dis; 1996 May; 5(3):317-22. PubMed ID: 8793684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cyclic deformation on xenogeneic heart valve biomaterials.
    Dalgliesh AJ; Parvizi M; Noble C; Griffiths LG
    PLoS One; 2019; 14(6):e0214656. PubMed ID: 31194770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pericardial heterograft valves: an assessment of leaflet stresses and their implications for heart valve design.
    Trowbridge EA; Crofts CE
    J Biomed Eng; 1987 Oct; 9(4):345-55. PubMed ID: 3682798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of heterograft heart valve biomaterials to moderate cyclic loading.
    Sun W; Sacks M; Fulchiero G; Lovekamp J; Vyavahare N; Scott M
    J Biomed Mater Res A; 2004 Jun; 69(4):658-69. PubMed ID: 15162408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials.
    Mirnajafi A; Raymer J; Scott MJ; Sacks MS
    Biomaterials; 2005 Mar; 26(7):795-804. PubMed ID: 15350785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indentation hardness: A simple test that correlates with the dissipated-energy predictor for fatigue-life in bovine pericardium membranes for bioprosthetic heart valves.
    Tobaruela A; Rojo FJ; García Paez JM; Bourges JY; Herrero EJ; Millán I; Alvarez L; Cordon Á; Guinea GV
    J Mech Behav Biomed Mater; 2016 Aug; 61():55-61. PubMed ID: 26849027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.