These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 34091358)
1. Study the interaction between juglone and calf thymus DNA by spectroscopic and molecular docking techniques. Shen B; Yang H; Chen J; Liu X; Zhou M Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 261():119998. PubMed ID: 34091358 [TBL] [Abstract][Full Text] [Related]
2. Groove binding between ferulic acid and calf thymus DNA: spectroscopic methodology combined with chemometrics and molecular docking studies. Zhang G; Zhou Z; Xu J; Liao Y; Hu X J Biomol Struct Dyn; 2020 Apr; 38(7):2029-2037. PubMed ID: 31157597 [TBL] [Abstract][Full Text] [Related]
3. Interaction of an abiraterone with calf thymus DNA: Investigation with spectroscopic technique and modelling studies. Wani TA; Alsaif N; Bakheit AH; Zargar S; Al-Mehizia AA; Khan AA Bioorg Chem; 2020 Jul; 100():103957. PubMed ID: 32470763 [TBL] [Abstract][Full Text] [Related]
4. Interaction of a bioactive pyrazole derivative with calf thymus DNA: Deciphering the mode of binding by multi-spectroscopic and molecular docking investigations. Kundu P; Chattopadhyay N J Photochem Photobiol B; 2017 Aug; 173():485-492. PubMed ID: 28668517 [TBL] [Abstract][Full Text] [Related]
5. Binding Interaction of Juglone with Lysozyme: Spectroscopic Studies Aided by In Silico Calculations. Saha S; Chowdhury J J Photochem Photobiol B; 2019 Apr; 193():89-99. PubMed ID: 30825814 [TBL] [Abstract][Full Text] [Related]
6. Spectroscopic study one thiosemicarbazone derivative with ctDNA using ethidium bromide as a fluorescence probe. Geng S; Wu Q; Shi L; Cui F Int J Biol Macromol; 2013 Sep; 60():288-94. PubMed ID: 23769721 [TBL] [Abstract][Full Text] [Related]
7. Binding studies of terbutaline sulfate to calf thymus DNA using multispectroscopic and molecular docking techniques. Bi S; Zhao T; Wang Y; Zhou H; Pang B; Gu T Spectrochim Acta A Mol Biomol Spectrosc; 2015; 150():921-7. PubMed ID: 26123508 [TBL] [Abstract][Full Text] [Related]
8. Spectroscopic and computational approaches to unravel the mode of binding between a isoflavone, biochanin-A and calf thymus DNA. Pawar S; Tandel R; Kunabevu R; Jaldappagari S J Biomol Struct Dyn; 2019 Mar; 37(4):846-856. PubMed ID: 29458302 [TBL] [Abstract][Full Text] [Related]
9. Investigation on the Effect of Fluorescence Quenching of Calf Thymus DNA by Piperine: Caspase Activation in the Human Breast Cancer Cell Line Studies. Rezaei S; Meftah HS; Ebtehajpour Y; Rahimi HR; Chamani J DNA Cell Biol; 2024 Jan; 43(1):26-38. PubMed ID: 38079271 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic Evidence of Phosphorous Heterocycle-DNA Interaction and its Verification by Docking Approach. Roy S; Saxena SK; Mishra S; Yogi P; Sagdeo PR; Kumar R J Fluoresc; 2018 Jan; 28(1):373-380. PubMed ID: 29243048 [TBL] [Abstract][Full Text] [Related]
11. Binding affinity of pyrano[3, 2-f]quinoline and DNA: spectroscopic and docking approach. Roy S J Biomol Struct Dyn; 2018 Nov; 36(15):3869-3877. PubMed ID: 29113576 [TBL] [Abstract][Full Text] [Related]
12. Binding properties of pendimethalin herbicide to DNA: multispectroscopic and molecular docking approaches. Ahmad I; Ahmad A; Ahmad M Phys Chem Chem Phys; 2016 Mar; 18(9):6476-85. PubMed ID: 26862600 [TBL] [Abstract][Full Text] [Related]
13. Spectroscopic studies on noncovalent binding of nicotinamide-modified BRCA1 (856-871) analogs to calf thymus DNA. Pan B; Lv M; Du H; Zhao D; Lu K Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jun; 294():122531. PubMed ID: 36854231 [TBL] [Abstract][Full Text] [Related]
14. Binding and thermodynamics of REV peptide-ctDNA interaction. Upadhyay SK Biopolymers; 2017 Mar; 108(2):. PubMed ID: 27353011 [TBL] [Abstract][Full Text] [Related]
15. Exploring the binding characteristics of febuxostat, an inhibitor of xanthine oxidase with calf thymus DNA: Multi-spectroscopic methodologies and molecular docking. Lu XY; Lou YY; Zhou KL; Jiang SL; Shi JH Nucleosides Nucleotides Nucleic Acids; 2022; 41(7):605-624. PubMed ID: 35410587 [TBL] [Abstract][Full Text] [Related]
16. Exploring the interaction of tepotinib with calf thymus DNA using molecular dynamics simulation and multispectroscopic techniques. Amir M; Aamir Qureshi M; Khan A; Nayeem SM; Ayoub Malik W; Javed S Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 308():123678. PubMed ID: 38039637 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopic and molecular modeling methods to investigate the interaction between 5-Hydroxymethyl-2-furfural and calf thymus DNA using ethidium bromide as a probe. Zhu J; Chen L; Dong Y; Li J; Liu X Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():78-83. PubMed ID: 24463243 [TBL] [Abstract][Full Text] [Related]
18. Studies on the interaction of apigenin with calf thymus DNA by spectroscopic methods. Zhang S; Sun X; Kong R; Xu M Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1666-70. PubMed ID: 25459730 [TBL] [Abstract][Full Text] [Related]
19. Binding properties of butylated hydroxytoluene with calf thymus DNA in vitro. Ma Y; Pan J; Zhang G; Zhang Y J Photochem Photobiol B; 2013 Sep; 126():112-8. PubMed ID: 23911863 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the binding of paylean and DNA by fluorescence, UV spectroscopy and molecular docking techniques. Zhou H; Bi S; Wang Y; Zhao T Luminescence; 2016 Jun; 31(4):1013-9. PubMed ID: 26597997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]