These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 34091654)
1. The effect of coronaviruses on olfaction: systematic review. Zugaj M; van Ditzhuijzen NS; Golebski K; Fokkens WJ Rhinology; 2021 Jun; 59(3):226-235. PubMed ID: 34091654 [TBL] [Abstract][Full Text] [Related]
2. Expression of the SARS-CoV-2 Entry Proteins, ACE2 and TMPRSS2, in Cells of the Olfactory Epithelium: Identification of Cell Types and Trends with Age. Bilinska K; Jakubowska P; Von Bartheld CS; Butowt R ACS Chem Neurosci; 2020 Jun; 11(11):1555-1562. PubMed ID: 32379417 [TBL] [Abstract][Full Text] [Related]
3. Pathophysiological relationship between COVID-19 and olfactory dysfunction: A systematic review. Las Casas Lima MH; Cavalcante ALB; Leão SC Braz J Otorhinolaryngol; 2022; 88(5):794-802. PubMed ID: 33965353 [TBL] [Abstract][Full Text] [Related]
4. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Brann DH; Tsukahara T; Weinreb C; Lipovsek M; Van den Berge K; Gong B; Chance R; Macaulay IC; Chou HJ; Fletcher RB; Das D; Street K; de Bezieux HR; Choi YG; Risso D; Dudoit S; Purdom E; Mill J; Hachem RA; Matsunami H; Logan DW; Goldstein BJ; Grubb MS; Ngai J; Datta SR Sci Adv; 2020 Jul; 6(31):. PubMed ID: 32937591 [TBL] [Abstract][Full Text] [Related]
5. Supporting Cells of the Human Olfactory Epithelium Co-Express the Lipid Scramblase TMEM16F and ACE2 and May Cause Smell Loss by SARS-CoV-2 Spike-Induced Syncytia. Hernandez-Clavijo A; Gonzalez-Velandia KY; Rangaswamy U; Guarneri G; Boscolo-Rizzo P; Tofanelli M; Gardenal N; Sanges R; Dibattista M; Tirelli G; Menini A Cell Physiol Biochem; 2022 Jun; 56(3):254-269. PubMed ID: 35670331 [TBL] [Abstract][Full Text] [Related]
6. Receptors Involved in COVID-19-Related Anosmia: An Update on the Pathophysiology and the Mechanistic Aspects. Al-Saigh NN; Harb AA; Abdalla S Int J Mol Sci; 2024 Aug; 25(15):. PubMed ID: 39126095 [TBL] [Abstract][Full Text] [Related]
7. Evidence of SARS-CoV2 Entry Protein ACE2 in the Human Nose and Olfactory Bulb. Klingenstein M; Klingenstein S; Neckel PH; Mack AF; Wagner AP; Kleger A; Liebau S; Milazzo A Cells Tissues Organs; 2020; 209(4-6):155-164. PubMed ID: 33486479 [TBL] [Abstract][Full Text] [Related]
8. SARS-CoV-2 and Three Related Coronaviruses Utilize Multiple ACE2 Orthologs and Are Potently Blocked by an Improved ACE2-Ig. Li Y; Wang H; Tang X; Fang S; Ma D; Du C; Wang Y; Pan H; Yao W; Zhang R; Zou X; Zheng J; Xu L; Farzan M; Zhong G J Virol; 2020 Oct; 94(22):. PubMed ID: 32847856 [TBL] [Abstract][Full Text] [Related]
10. Expression Pattern of the SARS-CoV-2 Entry Genes Liu Y; Qu HQ; Qu J; Tian L; Hakonarson H Viruses; 2020 Oct; 12(10):. PubMed ID: 33081421 [TBL] [Abstract][Full Text] [Related]
11. COVID-19 Anosmia: High Prevalence, Plural Neuropathogenic Mechanisms, and Scarce Neurotropism of SARS-CoV-2? Liang F; Wang Y Viruses; 2021 Nov; 13(11):. PubMed ID: 34835030 [TBL] [Abstract][Full Text] [Related]
12. An Update on Sphingosine-1-Phosphate and Lysophosphatidic Acid Receptor Transcripts in Rodent Olfactory Mucosa. Toebbe JT; Genter MB Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457160 [TBL] [Abstract][Full Text] [Related]
13. Pathophysiology of SARS-CoV-2 Infection of Nasal Respiratory and Olfactory Epithelia and Its Clinical Impact. Chee J; Chern B; Loh WS; Mullol J; Wang Y Curr Allergy Asthma Rep; 2023 Feb; 23(2):121-131. PubMed ID: 36598732 [TBL] [Abstract][Full Text] [Related]
14. Existence of SARS-CoV-2 Entry Molecules in the Oral Cavity. Sakaguchi W; Kubota N; Shimizu T; Saruta J; Fuchida S; Kawata A; Yamamoto Y; Sugimoto M; Yakeishi M; Tsukinoki K Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825469 [TBL] [Abstract][Full Text] [Related]
15. Negative correlation between ACE2 gene expression levels and loss of taste in a cohort of COVID-19 hospitalized patients: New clues to long-term cognitive disorders. Braga-Paz I; Ferreira de Araújo JL; Alves HJ; de Ávila RE; Resende GG; Teixeira MM; de Aguiar RS; de Souza RP; Bahia D Front Cell Infect Microbiol; 2022; 12():905757. PubMed ID: 36250059 [TBL] [Abstract][Full Text] [Related]
16. Relationship Between COVID-19 and Angiotensin-Converting Enzyme 2: A Scoping Review. Shojaee A; Vahedian-Azimi A; Faizi F; Rahimi-Bashar F; Shahriary A; Galeh HEG; Nehrir B; Guest PC; Sahebkar A Adv Exp Med Biol; 2021; 1321():53-68. PubMed ID: 33656713 [TBL] [Abstract][Full Text] [Related]
17. Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart. Liu H; Gai S; Wang X; Zeng J; Sun C; Zhao Y; Zheng Z Cardiovasc Res; 2020 Aug; 116(10):1733-1741. PubMed ID: 32638018 [TBL] [Abstract][Full Text] [Related]
18. Expression of angiotensin-converting enzyme 2 and proteases in COVID-19 patients: A potential role of cellular FURIN in the pathogenesis of SARS-CoV-2. Drak Alsibai K Med Hypotheses; 2020 Oct; 143():109893. PubMed ID: 32512290 [TBL] [Abstract][Full Text] [Related]
19. Early corticosteroid treatment enhances recovery from SARS-CoV-2 induced loss of smell in hamster. Merle-Nguyen L; Ando-Grard O; Bourgon C; St Albin A; Jacquelin J; Klonjkowski B; Le Poder S; Meunier N Brain Behav Immun; 2024 May; 118():78-89. PubMed ID: 38367845 [TBL] [Abstract][Full Text] [Related]
20. Immunohistochemical Study of SARS-CoV-2 Viral Entry Factors in the Cornea and Ocular Surface. Roehrich H; Yuan C; Hou JH Cornea; 2020 Dec; 39(12):1556-1562. PubMed ID: 32826650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]