These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34091863)

  • 21. Structure of full-length Drosophila cryptochrome.
    Zoltowski BD; Vaidya AT; Top D; Widom J; Young MW; Crane BR
    Nature; 2011 Nov; 480(7377):396-9. PubMed ID: 22080955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impacts of Cys392, Asp393, and ATP on the FAD Binding, Photoreduction, and the Stability of the Radical State of Chlamydomonas reinhardtii Cryptochrome.
    Xu L; Wen B; Shao W; Yao P; Zheng W; Zhou Z; Zhang Y; Zhu G
    Chembiochem; 2019 Apr; 20(7):940-948. PubMed ID: 30548754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic studies on the oxidation of semiquinone and hydroquinone forms of Arabidopsis cryptochrome by molecular oxygen.
    van Wilderen LJ; Silkstone G; Mason M; van Thor JJ; Wilson MT
    FEBS Open Bio; 2015; 5():885-92. PubMed ID: 26649273
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A cryptochrome-like protein is involved in the regulation of photosynthesis genes in Rhodobacter sphaeroides.
    Hendrischk AK; Frühwirth SW; Moldt J; Pokorny R; Metz S; Kaiser G; Jäger A; Batschauer A; Klug G
    Mol Microbiol; 2009 Nov; 74(4):990-1003. PubMed ID: 19878455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The active form of Escherichia coli DNA photolyase contains a fully reduced flavin and not a flavin radical, both in vivo and in vitro.
    Payne G; Heelis PF; Rohrs BR; Sancar A
    Biochemistry; 1987 Nov; 26(22):7121-7. PubMed ID: 2827744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Similarities and differences between cyclobutane pyrimidine dimer photolyase and (6-4) photolyase as revealed by resonance Raman spectroscopy: Electron transfer from the FAD cofactor to ultraviolet-damaged DNA.
    Li J; Uchida T; Todo T; Kitagawa T
    J Biol Chem; 2006 Sep; 281(35):25551-9. PubMed ID: 16816385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. pH-dependence of signaling-state formation in Drosophila cryptochrome.
    Einholz C; Nohr D; Rodriguez R; Topitsch A; Kern M; Goldmann J; Chileshe E; Okasha M; Weber S; Schleicher E
    Arch Biochem Biophys; 2021 Mar; 700():108787. PubMed ID: 33545100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution.
    Tagua VG; Pausch M; Eckel M; Gutiérrez G; Miralles-Durán A; Sanz C; Eslava AP; Pokorny R; Corrochano LM; Batschauer A
    Proc Natl Acad Sci U S A; 2015 Dec; 112(49):15130-5. PubMed ID: 26578805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Absorption and fluorescence spectroscopic characterization of cryptochrome 3 from Arabidopsis thaliana.
    Song SH; Dick B; Penzkofer A; Pokorny R; Batschauer A; Essen LO
    J Photochem Photobiol B; 2006 Oct; 85(1):1-16. PubMed ID: 16725342
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ATP binding promotes light-induced structural changes to the protein moiety of
    Iwata T; Yamada D; Mikuni K; Agata K; Hitomi K; Getzoff ED; Kandori H
    Photochem Photobiol Sci; 2020 Oct; 19(10):1326-1331. PubMed ID: 32935701
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectro-temporal characterization of the photoactivation mechanism of two new oxidized cryptochrome/photolyase photoreceptors.
    Brazard J; Usman A; Lacombat F; Ley C; Martin MM; Plaza P; Mony L; Heijde M; Zabulon G; Bowler C
    J Am Chem Soc; 2010 Apr; 132(13):4935-45. PubMed ID: 20222748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ATP binding turns plant cryptochrome into an efficient natural photoswitch.
    Müller P; Bouly JP; Hitomi K; Balland V; Getzoff ED; Ritz T; Brettel K
    Sci Rep; 2014 Jun; 4():5175. PubMed ID: 24898692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of 4-hydroxyphenylacetate 3-hydroxylase (HpaB) of Escherichia coli as a reduced flavin adenine dinucleotide-utilizing monooxygenase.
    Xun L; Sandvik ER
    Appl Environ Microbiol; 2000 Feb; 66(2):481-6. PubMed ID: 10653707
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of the cyclobutane cytidine dimer on the properties of Escherichia coli DNA photolyase.
    Murphy AK; Tammaro M; Cortazar F; Gindt YM; Schelvis JP
    J Phys Chem B; 2008 Nov; 112(47):15217-26. PubMed ID: 18973361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromophore function and interaction in Escherichia coli DNA photolyase: reconstitution of the apoenzyme with pterin and/or flavin derivatives.
    Jorns MS; Wang BY; Jordan SP; Chanderkar LP
    Biochemistry; 1990 Jan; 29(2):552-61. PubMed ID: 2405908
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Review of Spectroscopic and Biophysical-Chemical Studies of the Complex of Cyclobutane Pyrimidine Dimer Photolyase and Cryptochrome DASH with Substrate DNA.
    Schelvis JP; Gindt YM
    Photochem Photobiol; 2017 Jan; 93(1):26-36. PubMed ID: 27891613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical insights into the formation and stability of radical oxygen species in cryptochromes.
    Mondal P; Huix-Rotllant M
    Phys Chem Chem Phys; 2019 Apr; 21(17):8874-8882. PubMed ID: 30977757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coordinated production and utilization of FADH2 by NAD(P)H-flavin oxidoreductase and 4-hydroxyphenylacetate 3-monooxygenase.
    Louie TM; Xie XS; Xun L
    Biochemistry; 2003 Jun; 42(24):7509-17. PubMed ID: 12809507
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor.
    Krishnan N; Becker DF
    Biochemistry; 2005 Jun; 44(25):9130-9. PubMed ID: 15966737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.