BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34091925)

  • 1. A feasibility study on deep learning-based individualized 3D dose distribution prediction.
    Ma J; Nguyen D; Bai T; Folkerts M; Jia X; Lu W; Zhou L; Jiang S
    Med Phys; 2021 Aug; 48(8):4438-4447. PubMed ID: 34091925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using deep learning to predict beam-tunable Pareto optimal dose distribution for intensity-modulated radiation therapy.
    Bohara G; Sadeghnejad Barkousaraie A; Jiang S; Nguyen D
    Med Phys; 2020 Sep; 47(9):3898-3912. PubMed ID: 32621789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating human and learned domain knowledge into training deep neural networks: A differentiable dose-volume histogram and adversarial inspired framework for generating Pareto optimal dose distributions in radiation therapy.
    Nguyen D; McBeth R; Sadeghnejad Barkousaraie A; Bohara G; Shen C; Jia X; Jiang S
    Med Phys; 2020 Mar; 47(3):837-849. PubMed ID: 31821577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-agnostic 3D dose distribution prediction with deep learning neural networks.
    Mashayekhi M; Tapia IR; Balagopal A; Zhong X; Barkousaraie AS; McBeth R; Lin MH; Jiang S; Nguyen D
    Med Phys; 2022 Mar; 49(3):1391-1406. PubMed ID: 35037276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of dose-volume histogram prediction for organ-at risk and planning target volume based on machine learning.
    Jiao SX; Wang ML; Chen LX; Liu XW
    Sci Rep; 2021 Feb; 11(1):3117. PubMed ID: 33542427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dose-shaping using targeted sparse optimization.
    Sayre GA; Ruan D
    Med Phys; 2013 Jul; 40(7):071711. PubMed ID: 23822415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans.
    Yuan L; Ge Y; Lee WR; Yin FF; Kirkpatrick JP; Wu QJ
    Med Phys; 2012 Nov; 39(11):6868-78. PubMed ID: 23127079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for a priori estimation of best feasible DVH for organs-at-risk: Validation for head and neck VMAT planning.
    Ahmed S; Nelms B; Gintz D; Caudell J; Zhang G; Moros EG; Feygelman V
    Med Phys; 2017 Oct; 44(10):5486-5497. PubMed ID: 28777469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Based Dosimetry Evaluation at Organs-at-Risk in Esophageal Radiation Treatment Planning.
    Jiang D; Li T; Mao R; Du C; Liu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():868-871. PubMed ID: 31946032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knowledge-based planning using both the predicted DVH of organ-at risk and planning target volume.
    Jiao SX; Wang ML; Chen LX; Liu XW
    Med Eng Phys; 2022 Dec; 110():103803. PubMed ID: 35461772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining dense elements with attention mechanisms for 3D radiotherapy dose prediction on head and neck cancers.
    Cros S; Bouttier H; Nguyen-Tan PF; Vorontsov E; Kadoury S
    J Appl Clin Med Phys; 2022 Aug; 23(8):e13655. PubMed ID: 35661390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique.
    Fan J; Wang J; Chen Z; Hu C; Zhang Z; Hu W
    Med Phys; 2019 Jan; 46(1):370-381. PubMed ID: 30383300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attention-aware 3D U-Net convolutional neural network for knowledge-based planning 3D dose distribution prediction of head-and-neck cancer.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2022 Jul; 23(7):e13630. PubMed ID: 35533234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DVHnet: A deep learning-based prediction of patient-specific dose volume histograms for radiotherapy planning.
    Chen X; Men K; Zhu J; Yang B; Li M; Liu Z; Yan X; Yi J; Dai J
    Med Phys; 2021 Jun; 48(6):2705-2713. PubMed ID: 33550616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep learning model to predict dose-volume histograms of organs at risk in radiotherapy treatment plans.
    Liu Z; Chen X; Men K; Yi J; Dai J
    Med Phys; 2020 Nov; 47(11):5467-5481. PubMed ID: 32677104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning method for prediction of patient-specific dose distribution in breast cancer.
    Ahn SH; Kim E; Kim C; Cheon W; Kim M; Lee SB; Lim YK; Kim H; Shin D; Kim DY; Jeong JH
    Radiat Oncol; 2021 Aug; 16(1):154. PubMed ID: 34404441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep learning method for prediction of three-dimensional dose distribution of helical tomotherapy.
    Liu Z; Fan J; Li M; Yan H; Hu Z; Huang P; Tian Y; Miao J; Dai J
    Med Phys; 2019 May; 46(5):1972-1983. PubMed ID: 30870586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid optimization strategy for deliverable intensity-modulated radiotherapy plan generation using deep learning-based dose prediction.
    Sun Z; Xia X; Fan J; Zhao J; Zhang K; Wang J; Hu W
    Med Phys; 2022 Mar; 49(3):1344-1356. PubMed ID: 35043971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dosimetric features-driven machine learning model for DVH prediction in VMAT treatment planning.
    Ma M; Kovalchuk N; Buyyounouski MK; Xing L; Yang Y
    Med Phys; 2019 Feb; 46(2):857-867. PubMed ID: 30536442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning-Based Dose Prediction for Automated, Individualized Quality Assurance of Head and Neck Radiation Therapy Plans.
    Gronberg MP; Beadle BM; Garden AS; Skinner H; Gay S; Netherton T; Cao W; Cardenas CE; Chung C; Fuentes DT; Fuller CD; Howell RM; Jhingran A; Lim TY; Marquez B; Mumme R; Olanrewaju AM; Peterson CB; Vazquez I; Whitaker TJ; Wooten Z; Yang M; Court LE
    Pract Radiat Oncol; 2023; 13(3):e282-e291. PubMed ID: 36697347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.