These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 34092259)
1. Reducing the metabolic energy of walking and running using an unpowered hip exoskeleton. Zhou T; Xiong C; Zhang J; Hu D; Chen W; Huang X J Neuroeng Rehabil; 2021 Jun; 18(1):95. PubMed ID: 34092259 [TBL] [Abstract][Full Text] [Related]
2. Modulating Multiarticular Energy during Human Walking and Running with an Unpowered Exoskeleton. Zhou T; Zhou Z; Zhang H; Chen W Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366237 [TBL] [Abstract][Full Text] [Related]
3. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds. Nuckols RW; Sawicki GS J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840 [TBL] [Abstract][Full Text] [Related]
4. Regulating Metabolic Energy Among Joints During Human Walking Using a Multiarticular Unpowered Exoskeleton. Zhou T; Xiong C; Zhang J; Chen W; Huang X IEEE Trans Neural Syst Rehabil Eng; 2021; 29():662-672. PubMed ID: 33690121 [TBL] [Abstract][Full Text] [Related]
5. Reducing the Energy Cost of Human Running Using an Unpowered Exoskeleton. Nasiri R; Ahmadi A; Ahmadabadi MN IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2026-2032. PubMed ID: 30281466 [TBL] [Abstract][Full Text] [Related]
6. Optimized hip-knee-ankle exoskeleton assistance at a range of walking speeds. Bryan GM; Franks PW; Song S; Voloshina AS; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH J Neuroeng Rehabil; 2021 Oct; 18(1):152. PubMed ID: 34663372 [TBL] [Abstract][Full Text] [Related]
7. Emulator-Based Optimization of a Semi-Active Hip Exoskeleton Concept: Sweeping Impedance Across Walking Speeds. Shafer BA; Powell JC; Young AJ; Sawicki GS IEEE Trans Biomed Eng; 2023 Jan; 70(1):271-282. PubMed ID: 35788460 [TBL] [Abstract][Full Text] [Related]
8. Characterizing the relationship between peak assistance torque and metabolic cost reduction during running with ankle exoskeletons. Miller DE; Tan GR; Farina EM; Sheets-Singer AL; Collins SH J Neuroeng Rehabil; 2022 May; 19(1):46. PubMed ID: 35549977 [TBL] [Abstract][Full Text] [Related]
9. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. Koller JR; Jacobs DA; Ferris DP; Remy CD J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868 [TBL] [Abstract][Full Text] [Related]
10. Reducing the metabolic rate of walking and running with a versatile, portable exosuit. Kim J; Lee G; Heimgartner R; Arumukhom Revi D; Karavas N; Nathanson D; Galiana I; Eckert-Erdheim A; Murphy P; Perry D; Menard N; Choe DK; Malcolm P; Walsh CJ Science; 2019 Aug; 365(6454):668-672. PubMed ID: 31416958 [TBL] [Abstract][Full Text] [Related]
11. Passive-elastic knee-ankle exoskeleton reduces the metabolic cost of walking. Etenzi E; Borzuola R; Grabowski AM J Neuroeng Rehabil; 2020 Jul; 17(1):104. PubMed ID: 32718344 [TBL] [Abstract][Full Text] [Related]
12. Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads. Bryan GM; Franks PW; Song S; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH J Neuroeng Rehabil; 2021 Nov; 18(1):161. PubMed ID: 34743714 [TBL] [Abstract][Full Text] [Related]
13. Reducing the energy cost of running using a lightweight, low-profile elastic exosuit. Yang J; Park J; Kim J; Park S; Lee G J Neuroeng Rehabil; 2021 Aug; 18(1):129. PubMed ID: 34461938 [TBL] [Abstract][Full Text] [Related]
14. Design of an Unpowered Ankle-Foot Exoskeleton Used for Walking Assistance. Liu L; Wei W; Zheng K; Diao Y; Wang Z; Li G; Zhao G Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4501-4504. PubMed ID: 34892218 [TBL] [Abstract][Full Text] [Related]
16. Springs vs. motors: Ideal assistance in the lower limbs during walking at different speeds. Luis I; Afschrift M; Gutierrez-Farewik EM PLoS Comput Biol; 2024 Sep; 20(9):e1011837. PubMed ID: 39231195 [TBL] [Abstract][Full Text] [Related]
17. Optimizing exoskeleton assistance to improve walking speed and energy economy for older adults. Lakmazaheri A; Song S; Vuong BB; Biskner B; Kado DM; Collins SH J Neuroeng Rehabil; 2024 Jan; 21(1):1. PubMed ID: 38167151 [TBL] [Abstract][Full Text] [Related]
18. Development of an unpowered ankle exoskeleton for walking assist. Leclair J; Pardoel S; Helal A; Doumit M Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353 [No Abstract] [Full Text] [Related]
19. Invariant hip moment pattern while walking with a robotic hip exoskeleton. Lewis CL; Ferris DP J Biomech; 2011 Mar; 44(5):789-93. PubMed ID: 21333995 [TBL] [Abstract][Full Text] [Related]
20. Iterative Learning Control for a Soft Exoskeleton with Hip and Knee Joint Assistance. Chen C; Zhang Y; Li Y; Wang Z; Liu Y; Cao W; Wu X Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]