BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34092259)

  • 1. Reducing the metabolic energy of walking and running using an unpowered hip exoskeleton.
    Zhou T; Xiong C; Zhang J; Hu D; Chen W; Huang X
    J Neuroeng Rehabil; 2021 Jun; 18(1):95. PubMed ID: 34092259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulating Multiarticular Energy during Human Walking and Running with an Unpowered Exoskeleton.
    Zhou T; Zhou Z; Zhang H; Chen W
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds.
    Nuckols RW; Sawicki GS
    J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulating Metabolic Energy Among Joints During Human Walking Using a Multiarticular Unpowered Exoskeleton.
    Zhou T; Xiong C; Zhang J; Chen W; Huang X
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():662-672. PubMed ID: 33690121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing the Energy Cost of Human Running Using an Unpowered Exoskeleton.
    Nasiri R; Ahmadi A; Ahmadabadi MN
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2026-2032. PubMed ID: 30281466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized hip-knee-ankle exoskeleton assistance at a range of walking speeds.
    Bryan GM; Franks PW; Song S; Voloshina AS; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    J Neuroeng Rehabil; 2021 Oct; 18(1):152. PubMed ID: 34663372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emulator-Based Optimization of a Semi-Active Hip Exoskeleton Concept: Sweeping Impedance Across Walking Speeds.
    Shafer BA; Powell JC; Young AJ; Sawicki GS
    IEEE Trans Biomed Eng; 2023 Jan; 70(1):271-282. PubMed ID: 35788460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing the relationship between peak assistance torque and metabolic cost reduction during running with ankle exoskeletons.
    Miller DE; Tan GR; Farina EM; Sheets-Singer AL; Collins SH
    J Neuroeng Rehabil; 2022 May; 19(1):46. PubMed ID: 35549977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing the metabolic rate of walking and running with a versatile, portable exosuit.
    Kim J; Lee G; Heimgartner R; Arumukhom Revi D; Karavas N; Nathanson D; Galiana I; Eckert-Erdheim A; Murphy P; Perry D; Menard N; Choe DK; Malcolm P; Walsh CJ
    Science; 2019 Aug; 365(6454):668-672. PubMed ID: 31416958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passive-elastic knee-ankle exoskeleton reduces the metabolic cost of walking.
    Etenzi E; Borzuola R; Grabowski AM
    J Neuroeng Rehabil; 2020 Jul; 17(1):104. PubMed ID: 32718344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads.
    Bryan GM; Franks PW; Song S; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    J Neuroeng Rehabil; 2021 Nov; 18(1):161. PubMed ID: 34743714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing the energy cost of running using a lightweight, low-profile elastic exosuit.
    Yang J; Park J; Kim J; Park S; Lee G
    J Neuroeng Rehabil; 2021 Aug; 18(1):129. PubMed ID: 34461938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of an Unpowered Ankle-Foot Exoskeleton Used for Walking Assistance.
    Liu L; Wei W; Zheng K; Diao Y; Wang Z; Li G; Zhao G
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4501-4504. PubMed ID: 34892218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation-based biomechanical assessment of unpowered exoskeletons for running.
    Aftabi H; Nasiri R; Ahmadabadi MN
    Sci Rep; 2021 Jun; 11(1):11846. PubMed ID: 34088911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing exoskeleton assistance to improve walking speed and energy economy for older adults.
    Lakmazaheri A; Song S; Vuong BB; Biskner B; Kado DM; Collins SH
    J Neuroeng Rehabil; 2024 Jan; 21(1):1. PubMed ID: 38167151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an unpowered ankle exoskeleton for walking assist.
    Leclair J; Pardoel S; Helal A; Doumit M
    Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353
    [No Abstract]   [Full Text] [Related]  

  • 18. Invariant hip moment pattern while walking with a robotic hip exoskeleton.
    Lewis CL; Ferris DP
    J Biomech; 2011 Mar; 44(5):789-93. PubMed ID: 21333995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iterative Learning Control for a Soft Exoskeleton with Hip and Knee Joint Assistance.
    Chen C; Zhang Y; Li Y; Wang Z; Liu Y; Cao W; Wu X
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating Energy Among Foot-Ankle Complex With an Unpowered Exoskeleton Improves Human Walking Economy.
    Hu D; Xiong C; Wang T; Zhou T; Liang J; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1961-1970. PubMed ID: 35793296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.