These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34092389)

  • 1. Coordinated path following control of fixed-wing unmanned aerial vehicles in wind.
    Chen H; Wang X; Shen L; Yu Y
    ISA Trans; 2022 Mar; 122():260-270. PubMed ID: 34092389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Semi-Physical Platform for Guidance and Formations of Fixed-Wing Unmanned Aerial Vehicles.
    Yang J; Thomas AG; Singh S; Baldi S; Wang X
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust adaptive three-dimensional trajectory tracking control scheme design for small fixed-wing UAVs.
    Yang W; Shi Z; Zhong Y
    ISA Trans; 2023 Oct; 141():377-391. PubMed ID: 37453890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind.
    Luo H; Liang Z; Zhu M; Hu X; Wang G
    PLoS One; 2018; 13(3):e0194690. PubMed ID: 29561888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A stability perspective of bioinspired unmanned aerial vehicles performing optimal dynamic soaring.
    Mir I; Eisa SA; Taha H; Maqsood A; Akhtar S; Islam TU
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34325408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs.
    Wang X; Jiang P; Li D; Sun T
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28925960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation control of fixed-wing UAVs with communication delay.
    Du Z; Qu X; Shi J; Lu J
    ISA Trans; 2024 Mar; 146():154-164. PubMed ID: 38212200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auto-landing of fixed wing unmanned aerial vehicles using the backstepping control.
    Lungu M
    ISA Trans; 2019 Dec; 95():194-210. PubMed ID: 31171303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended observer based on adaptive second order sliding mode control for a fixed wing UAV.
    Castañeda H; Salas-Peña OS; León-Morales J
    ISA Trans; 2017 Jan; 66():226-232. PubMed ID: 27665143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal Polygon Decomposition for UAV Survey Coverage Path Planning in Wind.
    Coombes M; Fletcher T; Chen WH; Liu C
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autonomous localized path planning algorithm for UAVs based on TD3 strategy.
    Feiyu Z; Dayan L; Zhengxu W; Jianlin M; Niya W
    Sci Rep; 2024 Jan; 14(1):763. PubMed ID: 38191590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive path following control for miniature unmanned aerial vehicle confined to three-dimensional Dubins path: From take-off to landing.
    Wu W; Xu J; Gong C; Cui N
    ISA Trans; 2023 Dec; 143():156-167. PubMed ID: 37793969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Singular Finite Time Tracking Control Approach Based on Disturbance Observers for Perturbed Quadrotor Unmanned Aerial Vehicles.
    El-Sousy FFM; Alattas KA; Mofid O; Mobayen S; Asad JH; Skruch P; Assawinchaichote W
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Implementation of a Fully-Actuated Integrated Aerial Platform Based on Geometric Model Predictive Control.
    Shi C; Yu Y
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Globally Guided Deep V-Network-Based Motion Planning Algorithm for Fixed-Wing Unmanned Aerial Vehicles.
    Du H; You M; Zhao X
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autonomous Unmanned Aerial Vehicles in Search and Rescue Missions Using Real-Time Cooperative Model Predictive Control.
    de Alcantara Andrade FA; Reinier Hovenburg A; Netto de Lima L; Dahlin Rodin C; Johansen TA; Storvold R; Moraes Correia CA; Barreto Haddad D
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distributed adaptive fault-tolerant close formation flight control of multiple trailing fixed-wing UAVs.
    Yu Z; Zhang Y; Jiang B; Yu X; Fu J; Jin Y; Chai T
    ISA Trans; 2020 Nov; 106():181-199. PubMed ID: 32680604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive time-varying formation tracking control of unmanned aerial vehicles with quantized input.
    Wang Y; He L; Huang C
    ISA Trans; 2019 Feb; 85():76-83. PubMed ID: 30366714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Longitudinal modeling and control for the convertible unmanned aerial vehicle: Theory and experiments.
    Flores G
    ISA Trans; 2022 Mar; 122():312-335. PubMed ID: 33966895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainable monitoring coverage of unmanned aerial vehicle photogrammetry according to wing type and image resolution.
    Park S; Lee H; Chon J
    Environ Pollut; 2019 Apr; 247():340-348. PubMed ID: 30690230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.