These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34093160)

  • 1. Exoskeleton Active Walking Assistance Control Framework Based on Frequency Adaptive Dynamics Movement Primitives.
    Qiu S; Guo W; Zha F; Deng J; Wang X
    Front Neurorobot; 2021; 15():672582. PubMed ID: 34093160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.
    Peternel L; Noda T; Petrič T; Ude A; Morimoto J; Babič J
    PLoS One; 2016; 11(2):e0148942. PubMed ID: 26881743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Torque Predictions From Electromyography Across Multiple Levels of Active Exoskeleton Assistance Despite Non-linear Reorganization of Locomotor Output.
    George JA; Gunnell AJ; Archangeli D; Hunt G; Ishmael M; Foreman KB; Lenzi T
    Front Neurorobot; 2021; 15():700823. PubMed ID: 34803646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion.
    Jackson RW; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction learning control with movement primitives for lower limb exoskeleton.
    Wang J; Wu D; Gao Y; Dong W
    Front Neurorobot; 2022; 16():1086578. PubMed ID: 36605521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Pediatric Knee Exoskeleton With Real-Time Adaptive Control for Overground Walking in Ambulatory Individuals With Cerebral Palsy.
    Chen J; Hochstein J; Kim C; Tucker L; Hammel LE; Damiano DL; Bulea TC
    Front Robot AI; 2021; 8():702137. PubMed ID: 34222356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromusculoskeletal model-informed machine learning-based control of a knee exoskeleton with uncertainties quantification.
    Zhang L; Zhang X; Zhu X; Wang R; Gutierrez-Farewik EM
    Front Neurosci; 2023; 17():1254088. PubMed ID: 37712095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exoskeleton control for lower-extremity assistance based on adaptive frequency oscillators: adaptation of muscle activation and movement frequency.
    Aguirre-Ollinger G
    Proc Inst Mech Eng H; 2015 Jan; 229(1):52-68. PubMed ID: 25655955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperativity Model for Improving the Walking-Assistance Efficiency of the Exoskeleton.
    Ma J; Sun D; Ding Y; Luo D; Chen X
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-Driven Optimal Assistance Control of a Lower Limb Exoskeleton for Hemiplegic Patients.
    Peng Z; Luo R; Huang R; Yu T; Hu J; Shi K; Cheng H
    Front Neurorobot; 2020; 14():37. PubMed ID: 32719595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exoskeleton robot control for synchronous walking assistance in repetitive manual handling works based on dual unscented Kalman filter.
    Sado F; Yap HJ; Ghazilla RAR; Ahmad N
    PLoS One; 2018; 13(7):e0200193. PubMed ID: 30001415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human-in-the-Loop Cooperative Control of a Walking Exoskeleton for Following Time-Variable Human Intention.
    Li Z; Zhang T; Huang P; Li G
    IEEE Trans Cybern; 2024 Apr; 54(4):2142-2154. PubMed ID: 36279358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance.
    Gasparri GM; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):751-759. PubMed ID: 30908231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Motor Primitive-Based Adaptive Control for Lower Limb Exoskeletons.
    Nunes PF; Ostan I; Siqueira AAG
    Front Robot AI; 2020; 7():575217. PubMed ID: 33501336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An assistive controller for a lower-limb exoskeleton for rehabilitation after stroke, and preliminary assessment thereof.
    Murray SA; Ha KH; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4083-6. PubMed ID: 25570889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Single-Joint Implementation of Flow Control: Knee Joint Walking Assistance for Individuals With Mobility Impairment.
    Martinez A; Durrough C; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):934-942. PubMed ID: 32142447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological Hip Torque Estimation using a Robotic Hip Exoskeleton.
    Molinaro DD; Kang I; Camargo J; Young AJ
    Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron; 2020; 2020():791-796. PubMed ID: 35499064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-Synchronized Learning of Periodic Compliant Movement Primitives (P-CMPs).
    Petrič T
    Front Neurorobot; 2020; 14():599889. PubMed ID: 33281594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.