BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34093768)

  • 1. Glyoxalase 1 and protein kinase Cλ as potential therapeutic targets for late-stage breast cancer.
    Motomura H; Ozaki A; Tamori S; Onaga C; Nozaki Y; Waki Y; Takasawa R; Yoshizawa K; Mano Y; Sato T; Sasaki K; Ishiguro H; Miyagi Y; Nagashima Y; Yamamoto K; Sato K; Hanawa T; Tanuma SI; Ohno S; Akimoto K
    Oncol Lett; 2021 Jul; 22(1):547. PubMed ID: 34093768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GLO 1 and PKCλ Regulate ALDH1-positive Breast Cancer Stem Cell Survival.
    Motomura H; Tamori S; Yatani MA; Namiki A; Onaga C; Ozaki A; Takasawa R; Mano Y; Sato T; Hara Y; Sato K; Xiong Y; Harada Y; Hanawa T; Tanuma SI; Sasaki K; Ohno S; Akimoto K
    Anticancer Res; 2021 Dec; 41(12):5959-5971. PubMed ID: 34848450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High PKCλ expression is required for ALDH1-positive cancer stem cell function and indicates a poor clinical outcome in late-stage breast cancer patients.
    Nozaki Y; Motomura H; Tamori S; Kimura Y; Onaga C; Kanai S; Ishihara Y; Ozaki A; Hara Y; Harada Y; Mano Y; Sato T; Sato K; Sasaki K; Ishiguro H; Ohno S; Akimoto K
    PLoS One; 2020; 15(7):e0235747. PubMed ID: 32658903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Expression of
    Motomura H; Nozaki Y; Onaga C; Ozaki A; Tamori S; Shiina TA; Kanai S; Ohira C; Hara Y; Harada Y; Takasawa R; Hanawa T; Tanuma SI; Mano Y; Sato T; Sato K; Akimoto K
    Anticancer Res; 2020 Jan; 40(1):35-52. PubMed ID: 31892551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TLSC702, a Novel Inhibitor of Human Glyoxalase I, Induces Apoptosis in Tumor Cells.
    Takasawa R; Shimada N; Uchiro H; Takahashi S; Yoshimori A; Tanuma S
    Biol Pharm Bull; 2016; 39(5):869-73. PubMed ID: 27150153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Addition of hydrophobic side chains improve the apoptosis inducibility of the human glyoxalase I inhibitor, TLSC702.
    Azuma M; Inoue M; Nishida A; Akahane H; Kitajima M; Natani S; Chimori R; Yoshimori A; Mano Y; Uchiro H; Tanuma SI; Takasawa R
    Bioorg Med Chem Lett; 2021 May; 40():127918. PubMed ID: 33711442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glyoxalase 1 gene is highly expressed in basal-like human breast cancers and contributes to survival of ALDH1-positive breast cancer stem cells.
    Tamori S; Nozaki Y; Motomura H; Nakane H; Katayama R; Onaga C; Kikuchi E; Shimada N; Suzuki Y; Noike M; Hara Y; Sato K; Sato T; Yamamoto K; Hanawa T; Imai M; Abe R; Yoshimori A; Takasawa R; Tanuma SI; Akimoto K
    Oncotarget; 2018 Nov; 9(92):36515-36529. PubMed ID: 30559934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interdependence of GLO I and PKM2 in the Metabolic shift to escape apoptosis in GLO I-dependent cancer cells.
    Shimada N; Takasawa R; Tanuma SI
    Arch Biochem Biophys; 2018 Jan; 638():1-7. PubMed ID: 29225125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The PKM2 inhibitor shikonin enhances piceatannol-induced apoptosis of glyoxalase I-dependent cancer cells.
    Inoue M; Nakagawa Y; Azuma M; Akahane H; Chimori R; Mano Y; Takasawa R
    Genes Cells; 2024 Jan; 29(1):52-62. PubMed ID: 37963646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Piceatannol, a natural trans-stilbene compound, inhibits human glyoxalase I.
    Takasawa R; Akahane H; Tanaka H; Shimada N; Yamamoto T; Uchida-Maruki H; Sai M; Yoshimori A; Tanuma SI
    Bioorg Med Chem Lett; 2017 Mar; 27(5):1169-1174. PubMed ID: 28169168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of human glyoxalase I and its complex with TLSC702 reveal inhibitor binding mode and substrate preference.
    Usami M; Ando K; Shibuya A; Takasawa R; Yokoyama H
    FEBS Lett; 2022 Jun; 596(11):1458-1467. PubMed ID: 35363883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tat-glyoxalase protein inhibits against ischemic neuronal cell damage and ameliorates ischemic injury.
    Shin MJ; Kim DW; Lee YP; Ahn EH; Jo HS; Kim DS; Kwon OS; Kang TC; Cho YJ; Park J; Eum WS; Choi SY
    Free Radic Biol Med; 2014 Feb; 67():195-210. PubMed ID: 24252591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer.
    Zhang D; Tai LK; Wong LL; Chiu LL; Sethi SK; Koay ES
    Mol Cell Proteomics; 2005 Nov; 4(11):1686-96. PubMed ID: 16048908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Glyoxalase-I (Glo-I), Advanced Glycation Endproducts (AGEs), and Their Receptor (RAGE) in Chronic Liver Disease and Hepatocellular Carcinoma (HCC).
    Hollenbach M
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29156655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of potential flavonoid inhibitors of glyoxalase-I based on virtual screening and in vitro studies.
    Yadav A; Kumar R; Sunkaria A; Singhal N; Kumar M; Sandhir R
    J Biomol Struct Dyn; 2016 May; 34(5):993-1007. PubMed ID: 26108947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical significance of AGE-RAGE axis in colorectal cancer: associations with glyoxalase-I, adiponectin receptor expression and prognosis.
    Sakellariou S; Fragkou P; Levidou G; Gargalionis AN; Piperi C; Dalagiorgou G; Adamopoulos C; Saetta A; Agrogiannis G; Theohari I; Sougioultzis S; Tsioli P; Karavokyros I; Tsavaris N; Kostakis ID; Zizi-Serbetzoglou A; Vandoros GP; Patsouris E; Korkolopoulou P
    BMC Cancer; 2016 Mar; 16():174. PubMed ID: 26931562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathophysiological role of the glyoxalase system in renal hypoxic injury.
    Kumagai T; Nangaku M; Inagi R
    Ann N Y Acad Sci; 2008 Apr; 1126():265-7. PubMed ID: 18448828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel glyoxalase-I inhibitors possessing a "zinc-binding feature" as potential anticancer agents.
    Al-Balas QA; Hassan MA; Al-Shar'i NA; Mhaidat NM; Almaaytah AM; Al-Mahasneh FM; Isawi IH
    Drug Des Devel Ther; 2016; 10():2623-9. PubMed ID: 27574401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of Glyoxalase-I Leads to Reduced Proliferation, Migration and Colony Formation, and Enhanced Susceptibility to Sorafenib in Hepatocellular Carcinoma.
    Michel M; Hollenbach M; Pohl S; Ripoll C; Zipprich A
    Front Oncol; 2019; 9():785. PubMed ID: 31482070
    [No Abstract]   [Full Text] [Related]  

  • 20. Featured Article: Pyruvate preserves antiglycation defenses in porcine brain after cardiac arrest.
    Scott GF; Nguyen AQ; Cherry BH; Hollrah RA; Salinas I; Williams AG; Ryou MG; Mallet RT
    Exp Biol Med (Maywood); 2017 May; 242(10):1095-1103. PubMed ID: 28361585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.