These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 34093995)

  • 1. Molecular conformations and dynamics of nucleotide repeats associated with neurodegenerative diseases: double helices and CAG hairpin loops.
    Pan F; Zhang Y; Xu P; Man VH; Roland C; Weninger K; Sagui C
    Comput Struct Biotechnol J; 2021; 19():2819-2832. PubMed ID: 34093995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and Dynamics of DNA and RNA Double Helices Formed by d(CTG), d(GTC), r(CUG), and r(GUC) Trinucleotide Repeats and Associated DNA-RNA Hybrids.
    Fakharzadeh A; Qu J; Pan F; Sagui C; Roland C
    J Phys Chem B; 2023 Sep; 127(37):7907-7924. PubMed ID: 37681731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frustration Between Preferred States of Complementary Trinucleotide Repeat DNA Hairpins Anticorrelates with Expansion Disease Propensity.
    Xu P; Zhang J; Pan F; Mahn C; Roland C; Sagui C; Weninger K
    J Mol Biol; 2023 May; 435(10):168086. PubMed ID: 37024008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Base stacking and even/odd behavior of hairpin loops in DNA triplet repeat slippage and expansion with DNA polymerase.
    Hartenstine MJ; Goodman MF; Petruska J
    J Biol Chem; 2000 Jun; 275(24):18382-90. PubMed ID: 10849445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of strand slippage in DNA hairpins formed by CAG repeats: roles of sequence parity and trinucleotide interrupts.
    Xu P; Pan F; Roland C; Sagui C; Weninger K
    Nucleic Acids Res; 2020 Mar; 48(5):2232-2245. PubMed ID: 31974547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and Dynamics of DNA and RNA Double Helices Obtained from the CCG and GGC Trinucleotide Repeats.
    Pan F; Man VH; Roland C; Sagui C
    J Phys Chem B; 2018 Apr; 122(16):4491-4512. PubMed ID: 29617130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for two preferred hairpin folding patterns in d(CGG).d(CCG) repeat tracts in vivo.
    Darlow JM; Leach DR
    J Mol Biol; 1998 Jan; 275(1):17-23. PubMed ID: 9451435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and Dynamics of DNA and RNA Double Helices of CAG and GAC Trinucleotide Repeats.
    Pan F; Man VH; Roland C; Sagui C
    Biophys J; 2017 Jul; 113(1):19-36. PubMed ID: 28700917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases.
    Petruska J; Arnheim N; Goodman MF
    Nucleic Acids Res; 1996 Jun; 24(11):1992-8. PubMed ID: 8668527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing of double-R-loops in (CAG)·(CTG) and C9orf72 (GGGGCC)·(GGCCCC) repeats causes instability.
    Reddy K; Schmidt MH; Geist JM; Thakkar NP; Panigrahi GB; Wang YH; Pearson CE
    Nucleic Acids Res; 2014; 42(16):10473-87. PubMed ID: 25147206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of strand slippage in DNA polymerase expansions of CAG/CTG triplet repeats associated with neurodegenerative disease.
    Petruska J; Hartenstine MJ; Goodman MF
    J Biol Chem; 1998 Feb; 273(9):5204-10. PubMed ID: 9478975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro repair of DNA hairpins containing various numbers of CAG/CTG trinucleotide repeats.
    Zhang T; Huang J; Gu L; Li GM
    DNA Repair (Amst); 2012 Feb; 11(2):201-9. PubMed ID: 22041023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expansion and deletion of triplet repeat sequences in Escherichia coli occur on the leading strand of DNA replication.
    Iyer RR; Wells RD
    J Biol Chem; 1999 Feb; 274(6):3865-77. PubMed ID: 9920942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trinucleotide repeats associated with human disease.
    Mitas M
    Nucleic Acids Res; 1997 Jun; 25(12):2245-54. PubMed ID: 9171073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Resolution NMR Structures of Intrastrand Hairpins Formed by CTG Trinucleotide Repeats.
    Wan L; He A; Li J; Guo P; Han D
    ACS Chem Neurosci; 2024 Feb; 15(4):868-876. PubMed ID: 38319692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. E-motif formed by extrahelical cytosine bases in DNA homoduplexes of trinucleotide and hexanucleotide repeats.
    Pan F; Zhang Y; Man VH; Roland C; Sagui C
    Nucleic Acids Res; 2018 Jan; 46(2):942-955. PubMed ID: 29190385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics studies of trinucleotide repeat DNA involved in neurodegenerative disorders.
    Jithesh PV; Singh P; Joshi R
    J Biomol Struct Dyn; 2001 Dec; 19(3):479-95. PubMed ID: 11790146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA structure of trinucleotide repeats associated with human neurological diseases.
    Sobczak K; de Mezer M; Michlewski G; Krol J; Krzyzosiak WJ
    Nucleic Acids Res; 2003 Oct; 31(19):5469-82. PubMed ID: 14500809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence-Dependent Effects of Monovalent Cations on the Structural Dynamics of Trinucleotide-Repeat DNA Hairpins.
    Mitchell ML; Leveille MP; Solecki RS; Tran T; Cannon B
    J Phys Chem B; 2018 Dec; 122(50):11841-11851. PubMed ID: 30441902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel proteins with binding specificity for DNA CTG repeats and RNA CUG repeats: implications for myotonic dystrophy.
    Timchenko LT; Timchenko NA; Caskey CT; Roberts R
    Hum Mol Genet; 1996 Jan; 5(1):115-21. PubMed ID: 8789448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.