These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34094061)

  • 21. Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts.
    Frenkel AI
    Chem Soc Rev; 2012 Dec; 41(24):8163-78. PubMed ID: 22833100
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantification of copper phases, their reducibility and dispersion in doped-CuCl2/Al2O3 catalysts for ethylene oxychlorination.
    Muddada NB; Olsbye U; Leofanti G; Gianolio D; Bonino F; Bordiga S; Fuglerud T; Vidotto S; Marsella A; Lamberti C
    Dalton Trans; 2010 Sep; 39(36):8437-49. PubMed ID: 20717598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insight into growth of Au-Pt bimetallic nanoparticles: an in situ XAS study.
    Nayak C; Bhattacharyya D; Bhattacharyya K; Tripathi AK; Bapat RD; Jha SN; Sahoo NK
    J Synchrotron Radiat; 2017 Jul; 24(Pt 4):825-835. PubMed ID: 28664890
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural Self-Reconstruction of Catalysts in Electrocatalysis.
    Jiang H; He Q; Zhang Y; Song L
    Acc Chem Res; 2018 Nov; 51(11):2968-2977. PubMed ID: 30375841
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Operando Surface Spectroscopy and Microscopy during Catalytic Reactions: From Clusters via Nanoparticles to Meso-Scale Aggregates.
    Rupprechter G
    Small; 2021 Jul; 17(27):e2004289. PubMed ID: 33694320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes.
    Li Y; Zakharov D; Zhao S; Tappero R; Jung U; Elsen A; Baumann P; Nuzzo RG; Stach EA; Frenkel AI
    Nat Commun; 2015 Jun; 6():7583. PubMed ID: 26119246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic reduction of NO on copper/MCM-41 studied by in situ EXAFS and XANES.
    Huang YJ; Wang HP; Lee JF
    Chemosphere; 2003 Mar; 50(8):1035-41. PubMed ID: 12531709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deciphering the Local Environment of Single-Atom Catalysts with X-ray Absorption Spectroscopy.
    Li Y; Frenkel AI
    Acc Chem Res; 2021 Jun; 54(11):2660-2669. PubMed ID: 33990137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying the structure of Zn-N
    Li F; Bu Y; Han GF; Noh HJ; Kim SJ; Ahmad I; Lu Y; Zhang P; Jeong HY; Fu Z; Zhong Q; Baek JB
    Nat Commun; 2019 Jun; 10(1):2623. PubMed ID: 31197162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing Active Sites in Cu
    Liu Y; Halder A; Seifert S; Marcella N; Vajda S; Frenkel AI
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53363-53374. PubMed ID: 34255469
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Action of bimetallic nanocatalysts under reaction conditions and during catalysis: evolution of chemistry from high vacuum conditions to reaction conditions.
    Tao FF; Zhang S; Nguyen L; Zhang X
    Chem Soc Rev; 2012 Dec; 41(24):7980-93. PubMed ID: 23023152
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Situ/Operando X-ray Spectroscopies for Advanced Investigation of Energy Materials.
    Dong CL; Vayssieres L
    Chemistry; 2018 Dec; 24(69):18356-18373. PubMed ID: 30300939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In situ/operando studies for the production of hydrogen through the water-gas shift on metal oxide catalysts.
    Rodriguez JA; Hanson JC; Stacchiola D; Senanayake SD
    Phys Chem Chem Phys; 2013 Aug; 15(29):12004-25. PubMed ID: 23660768
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drastic Events and Gradual Change Define the Structure of an Active Copper-Zinc-Alumina Catalyst for Methanol Synthesis.
    Beck A; Newton MA; Zabilskiy M; Rzepka P; Willinger MG; van Bokhoven JA
    Angew Chem Int Ed Engl; 2022 Apr; 61(15):e202200301. PubMed ID: 35107196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine learning powered by principal component descriptors as the key for sorted structural fit of XANES.
    Martini A; Guda AA; Guda SA; Bugaev AL; Safonova OV; Soldatov AV
    Phys Chem Chem Phys; 2021 Sep; 23(33):17873-17887. PubMed ID: 34378592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A versatile in situ spectroscopic cell for fluorescence/transmission EXAFS and X-ray diffraction of heterogeneous catalysts in gas and liquid phase.
    Hannemann S; Casapu M; Grunwaldt JD; Haider P; Trüssel P; Baiker A; Welter E
    J Synchrotron Radiat; 2007 Jul; 14(Pt 4):345-54. PubMed ID: 17587660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding the Oxygen Evolution Reaction Mechanism on CoO
    Favaro M; Yang J; Nappini S; Magnano E; Toma FM; Crumlin EJ; Yano J; Sharp ID
    J Am Chem Soc; 2017 Jul; 139(26):8960-8970. PubMed ID: 28598604
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy.
    Timoshenko J; Anspoks A; Cintins A; Kuzmin A; Purans J; Frenkel AI
    Phys Rev Lett; 2018 Jun; 120(22):225502. PubMed ID: 29906159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In-situ studies of nanocatalysis.
    Zhang S; Nguyen L; Zhu Y; Zhan S; Tsung CK; Tao FF
    Acc Chem Res; 2013 Aug; 46(8):1731-9. PubMed ID: 23618394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.