BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34094075)

  • 1. Vibrational characterization of a diiron bridging hydride complex - a model for hydrogen catalysis.
    Gee LB; Pelmenschikov V; Wang H; Mishra N; Liu YC; Yoda Y; Tamasaku K; Chiang MH; Cramer SP
    Chem Sci; 2020 May; 11(21):5487-5493. PubMed ID: 34094075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Frequency Fe-H Vibrations in a Bridging Hydride Complex Characterized by NRVS and DFT.
    Pelmenschikov V; Gee LB; Wang H; MacLeod KC; McWilliams SF; Skubi KL; Cramer SP; Holland PL
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9367-9371. PubMed ID: 29847703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Key hydride vibrational modes in [NiFe] hydrogenase model compounds studied by resonance Raman spectroscopy and density functional calculations.
    Shafaat HS; Weber K; Petrenko T; Neese F; Lubitz W
    Inorg Chem; 2012 Nov; 51(21):11787-97. PubMed ID: 23039071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential Protonation at the Catalytic Six-Iron Cofactor of [FeFe]-Hydrogenases Revealed by
    Mebs S; Duan J; Wittkamp F; Stripp ST; Happe T; Apfel UP; Winkler M; Haumann M
    Inorg Chem; 2019 Mar; 58(6):4000-4013. PubMed ID: 30802044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isomerization of the hydride complexes [HFe2(SR)2(PR3)(x)(CO)(6-x)]+ (x = 2, 3, 4) relevant to the active site models for the [FeFe]-hydrogenases.
    Barton BE; Zampella G; Justice AK; De Gioia L; Rauchfuss TB; Wilson SR
    Dalton Trans; 2010 Mar; 39(12):3011-9. PubMed ID: 20221534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoinduced Terminal Hydride of [FeFe]-Hydrogenase Biomimetic Complexes.
    Niu S; Nelson AE; De La Torre P; Li H; Works CF; Hall MB
    Inorg Chem; 2019 Oct; 58(20):13737-13741. PubMed ID: 31566967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere.
    Rauchfuss TB
    Acc Chem Res; 2015 Jul; 48(7):2107-16. PubMed ID: 26079848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sterically Stabilized Terminal Hydride of a Diiron Dithiolate.
    Carlson MR; Gray DL; Richers CP; Wang W; Zhao PH; Rauchfuss TB; Pelmenschikov V; Pham CC; Gee LB; Wang H; Cramer SP
    Inorg Chem; 2018 Feb; 57(4):1988-2001. PubMed ID: 29384371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy.
    Ogata H; Krämer T; Wang H; Schilter D; Pelmenschikov V; van Gastel M; Neese F; Rauchfuss TB; Gee LB; Scott AD; Yoda Y; Tanaka Y; Lubitz W; Cramer SP
    Nat Commun; 2015 Aug; 6():7890. PubMed ID: 26259066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed-Valent Diiron μ-Carbyne, μ-Hydride Complexes: Implications for Nitrogenase.
    Arnett CH; Bogacz I; Chatterjee R; Yano J; Oyala PH; Agapie T
    J Am Chem Soc; 2020 Nov; 142(44):18795-18813. PubMed ID: 32976708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Molecular Proceedings of Biological Hydrogen Turnover.
    Haumann M; Stripp ST
    Acc Chem Res; 2018 Aug; 51(8):1755-1763. PubMed ID: 30001117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation, observation, and computational modeling of proposed intermediates in catalytic proton reductions with the hydrogenase mimic Fe2(CO)6S2C6H4.
    Wright RJ; Zhang W; Yang X; Fasulo M; Tilley TD
    Dalton Trans; 2012 Jan; 41(1):73-82. PubMed ID: 22031098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational investigation of [FeFe]-hydrogenase models: characterization of singly and doubly protonated intermediates and mechanistic insights.
    Huynh MT; Wang W; Rauchfuss TB; Hammes-Schiffer S
    Inorg Chem; 2014 Oct; 53(19):10301-11. PubMed ID: 25207842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ENDOR Characterization of (N
    Yang H; Rittle J; Marts AR; Peters JC; Hoffman BM
    Inorg Chem; 2018 Oct; 57(19):12323-12330. PubMed ID: 30222330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Resolution ENDOR Spectroscopy Combined with Quantum Chemical Calculations Reveals the Structure of Nitrogenase Janus Intermediate E
    Hoeke V; Tociu L; Case DA; Seefeldt LC; Raugei S; Hoffman BM
    J Am Chem Soc; 2019 Jul; 141(30):11984-11996. PubMed ID: 31310109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the active sites in metalloenzymes. 3. Density functional calculations on models for [Fe]-hydrogenase: structures and vibrational frequencies of the observed redox forms and the reaction mechanism at the Diiron Active Center.
    Cao Z; Hall MB
    J Am Chem Soc; 2001 Apr; 123(16):3734-42. PubMed ID: 11457105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Models of the iron-only hydrogenase enzyme: structure, electrochemistry and catalytic activity of Fe
    Unwin DG; Ghosh S; Ridley F; Richmond MG; Holt KB; Hogarth G
    Dalton Trans; 2019 May; 48(18):6174-6190. PubMed ID: 30942796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction Coordinate Leading to H
    Pelmenschikov V; Birrell JA; Pham CC; Mishra N; Wang H; Sommer C; Reijerse E; Richers CP; Tamasaku K; Yoda Y; Rauchfuss TB; Lubitz W; Cramer SP
    J Am Chem Soc; 2017 Nov; 139(46):16894-16902. PubMed ID: 29054130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terminal Thiolate-Dominated H/D Exchanges and H
    Yu X; Pang M; Zhang S; Hu X; Tung CH; Wang W
    J Am Chem Soc; 2018 Sep; 140(36):11454-11463. PubMed ID: 30114912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excited state properties of diiron dithiolate hydrides: implications in the unsensitized photocatalysis of H2 evolution.
    Bertini L; Fantucci P; De Gioia L; Zampella G
    Inorg Chem; 2013 Sep; 52(17):9826-41. PubMed ID: 23952259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.