These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 34094187)

  • 1. Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries.
    Zhang T; He W; Zhang W; Wang T; Li P; Sun Z; Yu X
    Chem Sci; 2020 Jul; 11(33):8686-8707. PubMed ID: 34094187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures.
    Zheng Y; Yao Y; Ou J; Li M; Luo D; Dou H; Li Z; Amine K; Yu A; Chen Z
    Chem Soc Rev; 2020 Dec; 49(23):8790-8839. PubMed ID: 33107869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Status and Prospect of Two-Dimensional Materials in Electrolytes for All-Solid-State Lithium Batteries.
    Lan X; Luo N; Li Z; Peng J; Cheng HM
    ACS Nano; 2024 Apr; 18(13):9285-9310. PubMed ID: 38522089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries.
    Gao Z; Sun H; Fu L; Ye F; Zhang Y; Luo W; Huang Y
    Adv Mater; 2018 Apr; 30(17):e1705702. PubMed ID: 29468745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mini review of current studies on metal-organic frameworks-incorporated composite solid polymer electrolytes in all-solid-state lithium batteries.
    Le PA; Nguyen NT; Nguyen PL; Phung TVB; Do CD
    Heliyon; 2023 Sep; 9(9):e19746. PubMed ID: 37809844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the Interfaces Between Argyrodite Solid Electrolytes and Lithium Metal Anode.
    Pang B; Gan Y; Xia Y; Huang H; He X; Zhang W
    Front Chem; 2022; 10():837978. PubMed ID: 35178377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-State Electrolytes for Lithium-Sulfur Batteries: Challenges, Progress, and Strategies.
    Zhu Q; Ye C; Mao D
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface Engineering for Garnet-Based Solid-State Lithium-Metal Batteries: Materials, Structures, and Characterization.
    Dai J; Yang C; Wang C; Pastel G; Hu L
    Adv Mater; 2018 Nov; 30(48):e1802068. PubMed ID: 30302834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries.
    Li S; Zhang SQ; Shen L; Liu Q; Ma JB; Lv W; He YB; Yang QH
    Adv Sci (Weinh); 2020 Mar; 7(5):1903088. PubMed ID: 32154083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Novel Trigonal Chloride Superionic Conductors as Promising Solid Electrolytes for All-Solid-State Lithium Batteries.
    Wang Y; Ren Z; Zhang J; Lu S; Hua C; Yuan H; Luo J; Liu Y; Nai J; Tao X
    Adv Sci (Weinh); 2024 Sep; 11(34):e2404213. PubMed ID: 38981036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancements and Challenges in Organic-Inorganic Composite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhang X; Cheng S; Fu C; Yin G; Wang L; Wu Y; Huo H
    Nanomicro Lett; 2024 Sep; 17(1):2. PubMed ID: 39302512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Innovative Electrolytes Based on Ionic Liquids and Polymers for Next-Generation Solid-State Batteries.
    Forsyth M; Porcarelli L; Wang X; Goujon N; Mecerreyes D
    Acc Chem Res; 2019 Mar; 52(3):686-694. PubMed ID: 30801170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium-Rich Anti-perovskite Li
    Ye Y; Deng Z; Gao L; Niu K; Zhao R; Bian J; Li S; Lin H; Zhu J; Zhao Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):28108-28117. PubMed ID: 34109784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Metal-Organic Framework Based Quasi-Solid-State Electrolyte Enabling Continuous Ion Transport for High-Safety and High-Energy-Density Lithium Metal Batteries.
    Wu Z; Yi Y; Hai F; Tian X; Zheng S; Guo J; Tang W; Hua W; Li M
    ACS Appl Mater Interfaces; 2023 May; 15(18):22065-22074. PubMed ID: 37122124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hollow-Particles Quasi-Solid-State Electrolytes with Biomimetic Ion Channels for High-Performance Lithium-Metal Batteries.
    Liu Z; Chen W; Zhang F; Wu F; Chen R; Li L
    Small; 2023 May; 19(18):e2206655. PubMed ID: 36737835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymers with Intrinsic Microporosity as Solid Ion Conductors for Solid-State Lithium Batteries.
    Wang XX; Song LN; Zheng LJ; Guan DH; Miao CL; Li JX; Li JY; Xu JJ
    Angew Chem Int Ed Engl; 2023 Sep; 62(37):e202308837. PubMed ID: 37477109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress and perspectives on metal-organic frameworks as solid-state electrolytes for lithium batteries.
    Wang X; Jin S; Liu Z
    Chem Commun (Camb); 2024 May; 60(41):5369-5390. PubMed ID: 38687504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite Electrolytes Prepared by Improving the Interfacial Compatibility of Organic-Inorganic Electrolytes for Dendrite-Free, Long-Life All-Solid Lithium Metal Batteries.
    Ma X; Liu M; Wu Q; Guan X; Wang F; Liu H; Xu J
    ACS Appl Mater Interfaces; 2022 Dec; 14(48):53828-53839. PubMed ID: 36444892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in Ordered Architecture Design of Composite Solid Electrolytes for Solid-State Lithium Batteries.
    Sun J; Liu C; Liu H; Li J; Zheng P; Zheng Y; Liu Z
    Chem Rec; 2023 Jun; 23(6):e202300044. PubMed ID: 37070651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.