These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34094202)

  • 21. Isotopic fractionation associated with [NiFe]- and [FeFe]-hydrogenases.
    Yang H; Gandhi H; Cornish AJ; Moran JJ; Kreuzer HW; Ostrom NE; Hegg EL
    Rapid Commun Mass Spectrom; 2016 Jan; 30(2):285-92. PubMed ID: 27071219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tracking the route of molecular oxygen in O
    Kalms J; Schmidt A; Frielingsdorf S; Utesch T; Gotthard G; von Stetten D; van der Linden P; Royant A; Mroginski MA; Carpentier P; Lenz O; Scheerer P
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):E2229-E2237. PubMed ID: 29463722
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Guiding Principles of Hydrogenase Catalysis Instigated and Clarified by Protein Film Electrochemistry.
    Armstrong FA; Evans RM; Hexter SV; Murphy BJ; Roessler MM; Wulff P
    Acc Chem Res; 2016 May; 49(5):884-92. PubMed ID: 27104487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [NiFe] hydrogenases: how close do structural and functional mimics approach the active site?
    Kaur-Ghumaan S; Stein M
    Dalton Trans; 2014 Jul; 43(25):9392-405. PubMed ID: 24846119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation.
    Peters JW; Schut GJ; Boyd ES; Mulder DW; Shepard EM; Broderick JB; King PW; Adams MW
    Biochim Biophys Acta; 2015 Jun; 1853(6):1350-69. PubMed ID: 25461840
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CO-Bridged H-Cluster Intermediates in the Catalytic Mechanism of [FeFe]-Hydrogenase CaI.
    Ratzloff MW; Artz JH; Mulder DW; Collins RT; Furtak TE; King PW
    J Am Chem Soc; 2018 Jun; 140(24):7623-7628. PubMed ID: 29792026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An iron-iron hydrogenase mimic with appended electron reservoir for efficient proton reduction in aqueous media.
    Becker R; Amirjalayer S; Li P; Woutersen S; Reek JN
    Sci Adv; 2016 Jan; 2(1):e1501014. PubMed ID: 26844297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. O
    Lu Y; Koo J
    Biotechnol Bioeng; 2019 Nov; 116(11):3124-3135. PubMed ID: 31403182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water oxidation by photosystem II is the primary source of electrons for sustained H
    Kosourov S; Nagy V; Shevela D; Jokel M; Messinger J; Allahverdiyeva Y
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29629-29636. PubMed ID: 33168746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli.
    Kim JY; Jo BH; Cha HJ
    Microb Cell Fact; 2010 Jul; 9():54. PubMed ID: 20604966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. O
    Hartmann S; Frielingsdorf S; Ciaccafava A; Lorent C; Fritsch J; Siebert E; Priebe J; Haumann M; Zebger I; Lenz O
    Biochemistry; 2018 Sep; 57(36):5339-5349. PubMed ID: 30110155
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis.
    Marques MC; Tapia C; Gutiérrez-Sanz O; Ramos AR; Keller KL; Wall JD; De Lacey AL; Matias PM; Pereira IAC
    Nat Chem Biol; 2017 May; 13(5):544-550. PubMed ID: 28319099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic production of hydrogen peroxide and water by oxygen-tolerant [NiFe]-hydrogenase during H2 cycling in the presence of O2.
    Lauterbach L; Lenz O
    J Am Chem Soc; 2013 Nov; 135(47):17897-905. PubMed ID: 24180286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural features of [NiFeSe] and [NiFe] hydrogenases determining their different properties: a computational approach.
    Baltazar CS; Teixeira VH; Soares CM
    J Biol Inorg Chem; 2012 Apr; 17(4):543-55. PubMed ID: 22286956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The exchange activities of [Fe] hydrogenase (iron-sulfur-cluster-free hydrogenase) from methanogenic archaea in comparison with the exchange activities of [FeFe] and [NiFe] hydrogenases.
    Vogt S; Lyon EJ; Shima S; Thauer RK
    J Biol Inorg Chem; 2008 Jan; 13(1):97-106. PubMed ID: 17924153
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrogen-fueled CO
    Cha J; Bak H; Kwon I
    Front Bioeng Biotechnol; 2022; 10():1078164. PubMed ID: 36686231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of the iron-sulfur cluster proximal to the active site on the catalytic function of an O2-tolerant NAD(+)-reducing [NiFe]-hydrogenase.
    Karstens K; Wahlefeld S; Horch M; Grunzel M; Lauterbach L; Lendzian F; Zebger I; Lenz O
    Biochemistry; 2015 Jan; 54(2):389-403. PubMed ID: 25517969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective cysteine-to-selenocysteine changes in a [NiFe]-hydrogenase confirm a special position for catalysis and oxygen tolerance.
    Evans RM; Krahn N; Murphy BJ; Lee H; Armstrong FA; Söll D
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753519
    [TBL] [Abstract][Full Text] [Related]  

  • 39. O
    Lenz O; Lauterbach L; Frielingsdorf S
    Methods Enzymol; 2018; 613():117-151. PubMed ID: 30509463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cyanide-bridged iron complexes as biomimetics of tri-iron arrangements in maturases of the H cluster of the di-iron hydrogenase.
    Lunsford AM; Beto CC; Ding S; Erdem ÖF; Wang N; Bhuvanesh N; Hall MB; Darensbourg MY
    Chem Sci; 2016 Jun; 7(6):3710-3719. PubMed ID: 30009000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.