BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 34094207)

  • 1. Low temperature-boosted high efficiency photo-induced charge transfer for remarkable SERS activity of ZnO nanosheets.
    Lin J; Yu J; Akakuru OU; Wang X; Yuan B; Chen T; Guo L; Wu A
    Chem Sci; 2020 Aug; 11(35):9414-9420. PubMed ID: 34094207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Dimensional Amorphous TiO
    Wang X; Shi W; Wang S; Zhao H; Lin J; Yang Z; Chen M; Guo L
    J Am Chem Soc; 2019 Apr; 141(14):5856-5862. PubMed ID: 30895783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remarkable SERS Activity Observed from Amorphous ZnO Nanocages.
    Wang X; Shi W; Jin Z; Huang W; Lin J; Ma G; Li S; Guo L
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9851-9855. PubMed ID: 28651039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Octahedral silver oxide nanoparticles enabling remarkable SERS activity for detecting circulating tumor cells.
    He M; Lin J; Akakuru OU; Xu X; Li Y; Cao Y; Xu Y; Wu A
    Sci China Life Sci; 2022 Mar; 65(3):561-571. PubMed ID: 34258713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SERS enhancement induced by the Se vacancy defects in ultra-thin hybrid phase SnSe
    Chen C; Zhang W; Duan P; Liu W; Shafi M; Hu X; Zhang C; Zhang C; Man B; Liu M
    Opt Express; 2022 Oct; 30(21):37795-37814. PubMed ID: 36258361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraordinary approach to further boost plasmonic NIR-SERS by cryogenic temperature-suppressed non-radiative recombination.
    Ma H; Tian Y; Jiao A; Wang C; Zhang M; Zheng L; Li G; Li S; Chen M
    Opt Lett; 2022 Feb; 47(3):670-673. PubMed ID: 35103704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-clean ternary Au/Ag/AgCl nanoclusters favoring cryogenic temperature-boosted broadband SERS ultrasensitive detection.
    Xu L; Chen M; Cui Q; Wang C; Zhang M; Zheng L; Li S; Zhang H; Liang G
    Opt Express; 2023 Jul; 31(16):26474-26495. PubMed ID: 37710508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large area CVD-grown vertically and horizontally oriented MoS
    Singh A; Mishra AK
    Nanoscale; 2023 Oct; 15(40):16480-16492. PubMed ID: 37794765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new semiconductor heterojunction SERS substrate for ultra-sensitive detection of antibiotic residues in egg.
    Zhang H; Tang Y; Wang W; Yu D; Yang L; Jiang X; Song W; Zhao B
    Food Chem; 2024 Jan; 431():137163. PubMed ID: 37603998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin Two-Dimensional Nanostructures: Surface Defects for Morphology-Driven Enhanced Semiconductor SERS.
    Song G; Gong W; Cong S; Zhao Z
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):5505-5511. PubMed ID: 33258164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal-Amorphous Core-Shell Structure Synergistically Enabling TiO
    Lin J; Ren W; Li A; Yao C; Chen T; Ma X; Wang X; Wu A
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4204-4211. PubMed ID: 31789506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-regulated enhanced Raman scattering on a semiconductor to study temperature-influenced enantioselective identification.
    Xu J; Li J; Liu X; Hu X; Zhou H; Gao Z; Xu J; Song YY
    Chem Sci; 2024 May; 15(19):7308-7315. PubMed ID: 38756792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal oxide semiconductor SERS-active substrates by defect engineering.
    Wu H; Wang H; Li G
    Analyst; 2017 Jan; 142(2):326-335. PubMed ID: 27942616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates.
    Wang Z; Meng G; Huang Z; Li Z; Zhou Q
    Nanoscale; 2014 Dec; 6(24):15280-5. PubMed ID: 25382607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance Surface-Enhanced Raman Scattering Substrates Based on the ZnO/Ag Core-Satellite Nanostructures.
    Sun Q; Xu Y; Gao Z; Zhou H; Zhang Q; Xu R; Zhang C; Yao H; Liu M
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35457994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of oxygen vacancy-mediated ultrahigh SERS sensitivity of Niobium pentoxide nanoparticles through defect engineering: theoretical and experimental studies.
    Ghosal S; Bora A; Giri PK
    Nanoscale; 2023 Dec; 16(1):309-321. PubMed ID: 38059742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Ultra-Sensitive Semiconductor SERS Substrate Boosted by the Coupled Resonance Effect.
    Yang L; Peng Y; Yang Y; Liu J; Huang H; Yu B; Zhao J; Lu Y; Huang Z; Li Z; Lombardi JR
    Adv Sci (Weinh); 2019 Jun; 6(12):1900310. PubMed ID: 31380169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Band Structure Engineering within Two-Dimensional Borocarbonitride Nanosheets for Surface-Enhanced Raman Scattering.
    Liang C; Lu ZA; Zheng M; Chen M; Zhang Y; Zhang B; Zhang J; Xu P
    Nano Lett; 2022 Aug; 22(16):6590-6598. PubMed ID: 35969868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A General Method for Large-Scale Fabrication of Semiconducting Oxides with High SERS Sensitivity.
    Zheng X; Ren F; Zhang S; Zhang X; Wu H; Zhang X; Xing Z; Qin W; Liu Y; Jiang C
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14534-14544. PubMed ID: 28398034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and theoretical evaluation of crystal facet exposure on the charge transfer and SERS activity of ZnO films.
    Luo Y; Niu L; Wang Y; Wen P; Gong Y; Li C; Xu S
    Nanoscale; 2022 Nov; 14(43):16220-16232. PubMed ID: 36281819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.