These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 34094248)
1. Effects of ruthenium hydride species on primary amine synthesis by direct amination of alcohols over a heterogeneous Ru catalyst. Kita Y; Kuwabara M; Yamadera S; Kamata K; Hara M Chem Sci; 2020 Sep; 11(36):9884-9890. PubMed ID: 34094248 [TBL] [Abstract][Full Text] [Related]
2. One-Step Reductive Amination of 5-Hydroxymethylfurfural into 2,5-Bis(aminomethyl)furan over Raney Ni. Wei Z; Cheng Y; Zhou K; Zeng Y; Yao E; Li Q; Liu Y; Sun Y ChemSusChem; 2021 Jun; 14(11):2308-2312. PubMed ID: 33909345 [TBL] [Abstract][Full Text] [Related]
3. Electronic Effect of Ruthenium Nanoparticles on Efficient Reductive Amination of Carbonyl Compounds. Komanoya T; Kinemura T; Kita Y; Kamata K; Hara M J Am Chem Soc; 2017 Aug; 139(33):11493-11499. PubMed ID: 28759206 [TBL] [Abstract][Full Text] [Related]
4. Direct amide synthesis from either alcohols or aldehydes with amines: activity of Ru(II) hydride and Ru(0) complexes. Muthaiah S; Ghosh SC; Jee JE; Chen C; Zhang J; Hong SH J Org Chem; 2010 May; 75(9):3002-6. PubMed ID: 20369820 [TBL] [Abstract][Full Text] [Related]
5. Recent Catalytic Advances on the Sustainable Production of Primary Furanic Amines from the One-Pot Reductive Amination of 5-Hydroxymethylfurfural. Truong CC; Mishra DK; Suh YW ChemSusChem; 2023 Jan; 16(1):e202201846. PubMed ID: 36354122 [TBL] [Abstract][Full Text] [Related]
6. Highly active Ru/TiO Camposeco R; Miguel O; Torres AE; Armas DE; Zanella R Environ Sci Pollut Res Int; 2023 Sep; 30(43):98076-98090. PubMed ID: 37603243 [TBL] [Abstract][Full Text] [Related]
7. Reductive Amination of 5-Hydroxymethylfurfural to 2,5-Bis(aminomethyl)furan over Alumina-Supported Ni-Based Catalytic Systems. Wei Z; Cheng Y; Huang H; Ma Z; Zhou K; Liu Y ChemSusChem; 2022 Jul; 15(13):e202200233. PubMed ID: 35225422 [TBL] [Abstract][Full Text] [Related]
8. Simple ruthenium-catalyzed reductive amination enables the synthesis of a broad range of primary amines. Senthamarai T; Murugesan K; Schneidewind J; Kalevaru NV; Baumann W; Neumann H; Kamer PCJ; Beller M; Jagadeesh RV Nat Commun; 2018 Oct; 9(1):4123. PubMed ID: 30297832 [TBL] [Abstract][Full Text] [Related]
9. Development of a general non-noble metal catalyst for the benign amination of alcohols with amines and ammonia. Cui X; Dai X; Deng Y; Shi F Chemistry; 2013 Mar; 19(11):3665-75. PubMed ID: 23417959 [TBL] [Abstract][Full Text] [Related]
10. Triphos derivatives and diphosphines as ligands in the ruthenium-catalysed alcohol amination with NH3. Nakagawa N; Derrah EJ; Schelwies M; Rominger F; Trapp O; Schaub T Dalton Trans; 2016 Apr; 45(16):6856-65. PubMed ID: 26880661 [TBL] [Abstract][Full Text] [Related]
11. Ruthenium(II) complexes with N-heterocyclic carbene-phosphine ligands for the Huang M; Li Y; Lan XB; Liu J; Zhao C; Liu Y; Ke Z Org Biomol Chem; 2021 Apr; 19(15):3451-3461. PubMed ID: 33899900 [TBL] [Abstract][Full Text] [Related]
12. Carbon-Supported Ru-Ni and Ru-W Catalysts for the Transformation of Hydroxyacetone and Saccharides into Glycol-Derived Primary Amines. Boulos J; Goc F; Vandenbrouck T; Perret N; Dhainaut J; Royer S; Rataboul F ChemSusChem; 2024 Jun; 17(11):e202400540. PubMed ID: 38572685 [TBL] [Abstract][Full Text] [Related]
13. Electron-Rich Ru Supported on N-Doped Coffee Biochar for Selective Reductive Amination of Furfural to Furfurylamine. Gong H; Wei L; Li Q; Zhang J; Wang F; Ren J; Shi XL Langmuir; 2024 Apr; 40(17):8950-8960. PubMed ID: 38623603 [TBL] [Abstract][Full Text] [Related]
14. From racemic alcohols to enantiopure amines: Ru-catalyzed diastereoselective amination. Oldenhuis NJ; Dong VM; Guan Z J Am Chem Soc; 2014 Sep; 136(36):12548-51. PubMed ID: 25170560 [TBL] [Abstract][Full Text] [Related]
15. Synthetic scope and mechanistic studies of Ru(OH)x/Al2O3-catalyzed heterogeneous hydrogen-transfer reactions. Yamaguchi K; Koike T; Kotani M; Matsushita M; Shinachi S; Mizuno N Chemistry; 2005 Nov; 11(22):6574-82. PubMed ID: 16092142 [TBL] [Abstract][Full Text] [Related]
16. Advances in the Catalytic Reductive Amination of Furfural to Furfural Amine: The Momentous Role of Active Metal Sites. Saini MK; Kumar S; Li H; Babu SA; Saravanamurugan S ChemSusChem; 2022 Apr; 15(7):e202200107. PubMed ID: 35171526 [TBL] [Abstract][Full Text] [Related]
17. Plasma-Promoted Ammonia Decomposition over Supported Ruthenium Catalysts for CO Wang Z; He G; Zhang H; Liao C; Yang C; Zhao F; Lei G; Zheng G; Mao X; Zhang K ChemSusChem; 2023 Dec; 16(24):e202202370. PubMed ID: 37667438 [TBL] [Abstract][Full Text] [Related]
18. A formal anti-Markovnikov hydroamination of allylic alcohols via tandem oxidation/1,4-conjugate addition/1,2-reduction using a Ru catalyst. Nakamura Y; Ohta T; Oe Y Chem Commun (Camb); 2015 May; 51(35):7459-62. PubMed ID: 25826011 [TBL] [Abstract][Full Text] [Related]
19. The "borrowing hydrogen strategy" by supported ruthenium hydroxide catalysts: synthetic scope of symmetrically and unsymmetrically substituted amines. Yamaguchi K; He J; Oishi T; Mizuno N Chemistry; 2010 Jun; 16(24):7199-207. PubMed ID: 20468035 [TBL] [Abstract][Full Text] [Related]
20. A high performance catalyst of shape-specific ruthenium nanoparticles for production of primary amines by reductive amination of carbonyl compounds. Chandra D; Inoue Y; Sasase M; Kitano M; Bhaumik A; Kamata K; Hosono H; Hara M Chem Sci; 2018 Jul; 9(27):5949-5956. PubMed ID: 30079209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]