BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 34094387)

  • 21. Loading of Silica Nanoparticles in Block Copolymer Vesicles during Polymerization-Induced Self-Assembly: Encapsulation Efficiency and Thermally Triggered Release.
    Mable CJ; Gibson RR; Prevost S; McKenzie BE; Mykhaylyk OO; Armes SP
    J Am Chem Soc; 2015 Dec; 137(51):16098-108. PubMed ID: 26600089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and Cross-Linking of All-Acrylamide Diblock Copolymer Nano-Objects via Polymerization-Induced Self-Assembly in Aqueous Solution.
    Byard SJ; Williams M; McKenzie BE; Blanazs A; Armes SP
    Macromolecules; 2017 Feb; 50(4):1482-1493. PubMed ID: 28260814
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-Temperature Synthesis of Thermoresponsive Diblock Copolymer Nano-Objects via Aqueous Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA) using Thermoresponsive Macro-RAFT Agents.
    Tan J; Bai Y; Zhang X; Huang C; Liu D; Zhang L
    Macromol Rapid Commun; 2016 Sep; 37(17):1434-40. PubMed ID: 27439569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polymerization-induced self-assembly and disassembly during the synthesis of thermoresponsive ABC triblock copolymer nano-objects in aqueous solution.
    Varlas S; Neal TJ; Armes SP
    Chem Sci; 2022 Jun; 13(24):7295-7303. PubMed ID: 35799807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shape-shifting thermoreversible diblock copolymer nano-objects
    Deane OJ; Jennings J; Armes SP
    Chem Sci; 2021 Oct; 12(41):13719-13729. PubMed ID: 34760156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time-resolved small-angle neutron scattering studies of the thermally-induced exchange of copolymer chains between spherical diblock copolymer nanoparticles prepared via polymerization-induced self-assembly.
    Cornel EJ; Smith GN; Rogers SE; Hallett JE; Growney DJ; Smith T; O'Hora PS; van Meurs S; Mykhaylyk OO; Armes SP
    Soft Matter; 2020 Apr; 16(15):3657-3668. PubMed ID: 32227048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spin-echo small-angle neutron scattering (SESANS) studies of diblock copolymer nanoparticles.
    Smith GN; Cunningham VJ; Canning SL; Derry MJ; Cooper JFK; Washington AL; Armes SP
    Soft Matter; 2018 Dec; 15(1):17-21. PubMed ID: 30520930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Small-Angle X-Ray Scattering Studies of Block Copolymer Nano-Objects: Formation of Ordered Phases in Concentrated Solution During Polymerization-Induced Self-Assembly.
    Rymaruk MJ; O'Brien CT; György C; Darmau B; Jennings J; Mykhaylyk OO; Armes SP
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):12955-12963. PubMed ID: 33725372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SAXS studies of the thermally-induced fusion of diblock copolymer spheres: formation of hybrid nanoparticles of intermediate size and shape.
    Cornel EJ; O'Hora PS; Smith T; Growney DJ; Mykhaylyk OO; Armes SP
    Chem Sci; 2020 Mar; 11(17):4312-4321. PubMed ID: 34122889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermoreversible crystallization-driven aggregation of diblock copolymer nanoparticles in mineral oil.
    Derry MJ; Mykhaylyk OO; Ryan AJ; Armes SP
    Chem Sci; 2018 May; 9(17):4071-4082. PubMed ID: 29780536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In Situ Spectroscopic Studies of Highly Transparent Nanoparticle Dispersions Enable Assessment of Trithiocarbonate Chain-End Fidelity during RAFT Dispersion Polymerization in Nonpolar Media.
    Cornel EJ; van Meurs S; Smith T; O'Hora PS; Armes SP
    J Am Chem Soc; 2018 Oct; 140(40):12980-12988. PubMed ID: 30252464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reverse Sequence Polymerization-Induced Self-Assembly in Aqueous Media.
    Neal TJ; Penfold NJW; Armes SP
    Angew Chem Int Ed Engl; 2022 Aug; 61(33):e202207376. PubMed ID: 35678548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How Do Spherical Diblock Copolymer Nanoparticles Grow during RAFT Alcoholic Dispersion Polymerization?
    Jones ER; Mykhaylyk OO; Semsarilar M; Boerakker M; Wyman P; Armes SP
    Macromolecules; 2016 Jan; 49(1):172-181. PubMed ID: 26893528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epoxy-Functional Sterically Stabilized Diblock Copolymer Nanoparticles via RAFT Aqueous Emulsion Polymerization: Comparison of Two Synthetic Strategies.
    György C; Lovett JR; Penfold NJW; Armes SP
    Macromol Rapid Commun; 2019 Jan; 40(2):e1800289. PubMed ID: 29943444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring the Upper Size Limit for Sterically Stabilized Diblock Copolymer Nanoparticles Prepared by Polymerization-Induced Self-Assembly in Non-Polar Media.
    Parker BR; Derry MJ; Ning Y; Armes SP
    Langmuir; 2020 Apr; 36(14):3730-3736. PubMed ID: 32216260
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption of Small Cationic Nanoparticles onto Large Anionic Particles from Aqueous Solution: A Model System for Understanding Pigment Dispersion and the Problem of Effective Particle Density.
    North SM; Jones ER; Smith GN; Mykhaylyk OO; Annable T; Armes SP
    Langmuir; 2017 Feb; 33(5):1275-1284. PubMed ID: 28075595
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous-Flow Laboratory SAXS for In Situ Determination of the Impact of Hydrophilic Block Length on Spherical Nano-Object Formation during Polymerization-Induced Self-Assembly.
    Guild JD; Knox ST; Burholt SB; Hilton EM; Terrill NJ; Schroeder SLM; Warren NJ
    Macromolecules; 2023 Aug; 56(16):6426-6435. PubMed ID: 37637307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aqueous worm gels can be reconstituted from freeze-dried diblock copolymer powder.
    Kocik MK; Mykhaylyk OO; Armes SP
    Soft Matter; 2014 Jun; 10(22):3984-92. PubMed ID: 24733440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pyridine-functional diblock copolymer nanoparticles synthesized
    Wen SP; Fielding LA
    Soft Matter; 2022 Feb; 18(7):1385-1394. PubMed ID: 35084008
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tuning the Glass Transition Temperature of a Core-Forming Block during Polymerization-Induced Self-Assembly: Statistical Copolymerization of Lauryl Methacrylate with Methyl Methacrylate Provides Access to Spheres, Worms, and Vesicles.
    György C; Neal TJ; Smith T; Growney DJ; Armes SP
    Macromolecules; 2022 May; 55(10):4091-4101. PubMed ID: 35634036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.