These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34094456)

  • 1. Selectively detecting attomolar concentrations of proteins using gold lined nanopores in a nanopore blockade sensor.
    Wu Y; Yao Y; Cheong S; Tilley RD; Gooding JJ
    Chem Sci; 2020 Oct; 11(46):12570-12579. PubMed ID: 34094456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanopore blockade sensors for ultrasensitive detection of proteins in complex biological samples.
    Chuah K; Wu Y; Vivekchand SRC; Gaus K; Reece PJ; Micolich AP; Gooding JJ
    Nat Commun; 2019 May; 10(1):2109. PubMed ID: 31068594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the sensing performance of nanopore blockade sensors: A case study of prostate-specific antigen assay.
    Wu Y; Chuah K; Gooding JJ
    Biosens Bioelectron; 2020 Oct; 165():112434. PubMed ID: 32729547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanopore Blockade Sensors for Quantitative Analysis Using an Optical Nanopore Assay.
    Doan THP; Fried JP; Tang W; Hagness DE; Yang Y; Wu Y; Tilley RD; Gooding JJ
    Nano Lett; 2024 May; 24(21):6218-6224. PubMed ID: 38757765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Nanopore Sensors for Quantitative Analysis.
    Fried JP; Wu Y; Tilley RD; Gooding JJ
    Nano Lett; 2022 Feb; 22(3):869-880. PubMed ID: 35089719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-Free Multiplexed Electrical Detection of Cancer Markers on a Microchip Featuring an Integrated Fluidic Diode Nanopore Array.
    Duan L; Yobas L
    ACS Nano; 2018 Aug; 12(8):7892-7900. PubMed ID: 30024729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key Parameters That Determine the Magnitude of the Decrease in Current in Nanopore Blockade Sensors.
    Tang W; Wu Y; Mehdipour M; Chen HS; Tilley RD; Gooding JJ
    Nano Lett; 2021 Nov; 21(22):9374-9380. PubMed ID: 34726925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermostable virus portal proteins as reprogrammable adapters for solid-state nanopore sensors.
    Cressiot B; Greive SJ; Mojtabavi M; Antson AA; Wanunu M
    Nat Commun; 2018 Nov; 9(1):4652. PubMed ID: 30405123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasensitive and Selective Field-Effect Transistor-Based Biosensor Created by Rings of MoS
    Park H; Baek S; Sen A; Jung B; Shim J; Park YC; Lee LP; Kim YJ; Kim S
    ACS Nano; 2022 Feb; 16(2):1826-1835. PubMed ID: 34965087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopore-Based Fingerprint Immunoassay Based on Rolling Circle Amplification and DNA Fragmentation.
    Kang X; Wu C; Alibakhshi MA; Liu X; Yu L; Walt DR; Wanunu M
    ACS Nano; 2023 Mar; 17(6):5412-5420. PubMed ID: 36877993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated system for optical and electrical detection of single molecules/particles inside a solid-state nanopore.
    Shi X; Gao R; Ying YL; Si W; Chen Y; Long YT
    Faraday Discuss; 2015; 184():85-99. PubMed ID: 26420730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytes Triggered Conformational Switch of i-Motif DNA inside Gold-Decorated Solid-State Nanopores.
    Zhao D; Tang H; Wang H; Yang C; Li Y
    ACS Sens; 2020 Jul; 5(7):2177-2183. PubMed ID: 32588619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-state nanopores and nanopore arrays optimized for optical detection.
    Sawafta F; Clancy B; Carlsen AT; Huber M; Hall AR
    Nanoscale; 2014 Jun; 6(12):6991-6. PubMed ID: 24838772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid ultrasensitive single particle surface-enhanced Raman spectroscopy using metallic nanopores.
    Cecchini MP; Wiener A; Turek VA; Chon H; Lee S; Ivanov AP; McComb DW; Choo J; Albrecht T; Maier SA; Edel JB
    Nano Lett; 2013 Oct; 13(10):4602-9. PubMed ID: 24021086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of a single enzyme molecule based on a solid-state nanopore sensor.
    Tan S; Gu D; Liu H; Liu Q
    Nanotechnology; 2016 Apr; 27(15):155502. PubMed ID: 26937593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-Time Monitoring of Exosomes Secretion from Single Cell Using Dual-Nanopore Biosensors.
    Zhang H; Zheng X; Zhao T; Chen Y; Luo Y; Dong Y; Tang H; Jiang J
    ACS Sens; 2023 Jul; 8(7):2583-2590. PubMed ID: 37368982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High selectivity sensing of bovine serum albumin: The combination of glass nanopore and molecularly imprinted technology.
    Wang L; Ma Y; Wang L
    Biosens Bioelectron; 2021 Apr; 178():113056. PubMed ID: 33550161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemically functionalized conical PET nanopore for protein detection at the single-molecule level.
    Zhang Y; Chen X; Wang C; Roozbahani GM; Chang HC; Guan X
    Biosens Bioelectron; 2020 Oct; 165():112289. PubMed ID: 32729470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges and Solutions in Developing Ultrasensitive Biosensors.
    Wu Y; Tilley RD; Gooding JJ
    J Am Chem Soc; 2019 Jan; 141(3):1162-1170. PubMed ID: 30463401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.