These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34094473)

  • 21. STOUT: SMILES to IUPAC names using neural machine translation.
    Rajan K; Zielesny A; Steinbeck C
    J Cheminform; 2021 Apr; 13(1):34. PubMed ID: 33906675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. End-to-End Representation Learning for Chemical-Chemical Interaction Prediction.
    Kwon S; Yoon S
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1436-1447. PubMed ID: 30106687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification.
    Djoumbou-Feunang Y; Fiamoncini J; Gil-de-la-Fuente A; Greiner R; Manach C; Wishart DS
    J Cheminform; 2019 Jan; 11(1):2. PubMed ID: 30612223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DeepRT: Predicting compounds presence in pathway modules and classifying into module classes using deep neural networks based on molecular properties.
    Shah HA; Liu J; Yang Z; Yang F; Zhang Q; Feng J
    J Bioinform Comput Biol; 2023 Aug; 21(4):2350017. PubMed ID: 37632195
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generative Pre-trained Transformer (GPT) based model with relative attention for de novo drug design.
    Haroon S; C A H; A S J
    Comput Biol Chem; 2023 Oct; 106():107911. PubMed ID: 37450999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Small beams, fast predictions: a comparison of machine learning dose prediction models for proton minibeam therapy.
    Mentzel F; Kröninger K; Lerch M; Nackenhorst O; Rosenfeld A; Tsoi AC; Weingarten J; Hagenbuchner M; Guatelli S
    Med Phys; 2022 Dec; 49(12):7791-7801. PubMed ID: 36309820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep learning for retention time prediction in reversed-phase liquid chromatography.
    Fedorova ES; Matyushin DD; Plyushchenko IV; Stavrianidi AN; Buryak AK
    J Chromatogr A; 2022 Feb; 1664():462792. PubMed ID: 34999303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comprehensive ensemble in QSAR prediction for drug discovery.
    Kwon S; Bae H; Jo J; Yoon S
    BMC Bioinformatics; 2019 Oct; 20(1):521. PubMed ID: 31655545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SPORCalc: A development of a database analysis that provides putative metabolic enzyme reactions for ligand-based drug design.
    Smith J; Stein V
    Comput Biol Chem; 2009 Apr; 33(2):149-59. PubMed ID: 19157988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Research progress and application of retention time prediction method based on deep learning].
    DU Z; Shao W; Qin W
    Se Pu; 2021 Mar; 39(3):211-218. PubMed ID: 34227303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preclinical pharmacokinetics: an approach towards safer and efficacious drugs.
    Singh SS
    Curr Drug Metab; 2006 Feb; 7(2):165-82. PubMed ID: 16472106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Classification of metabolites with kernel-partial least squares (K-PLS).
    Embrechts MJ; Ekins S
    Drug Metab Dispos; 2007 Mar; 35(3):325-7. PubMed ID: 17142559
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GeneralizedDTA: combining pre-training and multi-task learning to predict drug-target binding affinity for unknown drug discovery.
    Lin S; Shi C; Chen J
    BMC Bioinformatics; 2022 Sep; 23(1):367. PubMed ID: 36071406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RD-Metabolizer: an integrated and reaction types extensive approach to predict metabolic sites and metabolites of drug-like molecules.
    Meng J; Li S; Liu X; Zheng M; Li H
    Chem Cent J; 2017 Jul; 11(1):65. PubMed ID: 29086838
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine Learning in Computer-Aided Synthesis Planning.
    Coley CW; Green WH; Jensen KF
    Acc Chem Res; 2018 May; 51(5):1281-1289. PubMed ID: 29715002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An explainability framework for deep learning on chemical reactions exemplified by enzyme-catalysed reaction classification.
    Probst D
    J Cheminform; 2023 Nov; 15(1):113. PubMed ID: 37996942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comprehensive Machine Learning Prediction of Extensive Enzymatic Reactions.
    Watanabe N; Yamamoto M; Murata M; Vavricka CJ; Ogino C; Kondo A; Araki M
    J Phys Chem B; 2022 Sep; 126(36):6762-6770. PubMed ID: 36053051
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.