BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34094839)

  • 1. Mechanism of allosteric activation of SIRT6 revealed by the action of rationally designed activators.
    Lu S; Chen Y; Wei J; Zhao M; Ni D; He X; Zhang J
    Acta Pharm Sin B; 2021 May; 11(5):1355-1361. PubMed ID: 34094839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting a cryptic allosteric site of SIRT6 with small-molecule inhibitors that inhibit the migration of pancreatic cancer cells.
    Zhang Q; Chen Y; Ni D; Huang Z; Wei J; Feng L; Su JC; Wei Y; Ning S; Yang X; Zhao M; Qiu Y; Song K; Yu Z; Xu J; Li X; Lin H; Lu S; Zhang J
    Acta Pharm Sin B; 2022 Feb; 12(2):876-889. PubMed ID: 35256952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of activation for the sirtuin 6 protein deacylase.
    Klein MA; Liu C; Kuznetsov VI; Feltenberger JB; Tang W; Denu JM
    J Biol Chem; 2020 Jan; 295(5):1385-1399. PubMed ID: 31822559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small-molecule activating SIRT6 elicits therapeutic effects and synergistically promotes anti-tumor activity of vitamin D
    Shang J; Zhu Z; Chen Y; Song J; Huang Y; Song K; Zhong J; Xu X; Wei J; Wang C; Cui L; Liu CY; Zhang J
    Theranostics; 2020; 10(13):5845-5864. PubMed ID: 32483423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering the Allosteric Activation Mechanism of SIRT6 Using Molecular Dynamics Simulations.
    Zhao Z; Du J; Du Y; Gao Y; Yu M; Zhang Y; Fang H; Hou X
    J Chem Inf Model; 2023 Sep; 63(18):5896-5902. PubMed ID: 37653718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a cellularly active SIRT6 allosteric activator.
    Huang Z; Zhao J; Deng W; Chen Y; Shang J; Song K; Zhang L; Wang C; Lu S; Yang X; He B; Min J; Hu H; Tan M; Xu J; Zhang Q; Zhong J; Sun X; Mao Z; Lin H; Xiao M; Chin YE; Jiang H; Xu Y; Chen G; Zhang J
    Nat Chem Biol; 2018 Dec; 14(12):1118-1126. PubMed ID: 30374165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of cryptic allosteric sites using reversed allosteric communication by a combined computational and experimental strategy.
    Ni D; Wei J; He X; Rehman AU; Li X; Qiu Y; Pu J; Lu S; Zhang J
    Chem Sci; 2020 Nov; 12(1):464-476. PubMed ID: 34163609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects.
    Yu J; Wu Y; Yang P
    J Neurochem; 2016 May; 137(3):371-83. PubMed ID: 26896748
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Jos S; Aouti S; Unni S; Haridass V; Gogoi H; Deshmukh P; Padmanabhan B; Padavattan S
    J Biomol Struct Dyn; 2022; 40(20):10033-10044. PubMed ID: 34121619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitro-fatty acids as activators of hSIRT6 deacetylase activity.
    Carreño M; Bresque M; Machado MR; Santos L; Durán R; Vitturi DA; Escande C; Denicola A
    J Biol Chem; 2020 Dec; 295(52):18355-18366. PubMed ID: 33122195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SIRT6 in Vascular Diseases, from Bench to Bedside.
    Ren SC; Chen X; Gong H; Wang H; Wu C; Li PH; Chen XF; Qu JH; Tang X
    Aging Dis; 2022 Jul; 13(4):1015-1029. PubMed ID: 35855341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators.
    Klein MA; Denu JM
    J Biol Chem; 2020 Aug; 295(32):11021-11041. PubMed ID: 32518153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A crucial role of SUMOylation in modulating Sirt6 deacetylation of H3 at lysine 56 and its tumor suppressive activity.
    Cai J; Zuo Y; Wang T; Cao Y; Cai R; Chen FL; Cheng J; Mu J
    Oncogene; 2016 Sep; 35(37):4949-56. PubMed ID: 26898756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trichostatin A inhibits deacetylation of histone H3 and p53 by SIRT6.
    Wood M; Rymarchyk S; Zheng S; Cen Y
    Arch Biochem Biophys; 2018 Jan; 638():8-17. PubMed ID: 29233643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation.
    Feldman JL; Dittenhafer-Reed KE; Kudo N; Thelen JN; Ito A; Yoshida M; Denu JM
    Biochemistry; 2015 May; 54(19):3037-3050. PubMed ID: 25897714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for the activation and inhibition of Sirtuin 6 by quercetin and its derivatives.
    You W; Zheng W; Weiss S; Chua KF; Steegborn C
    Sci Rep; 2019 Dec; 9(1):19176. PubMed ID: 31844103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Chemical Biology Approach to Reveal Sirt6-targeted Histone H3 Sites in Nucleosomes.
    Wang WW; Zeng Y; Wu B; Deiters A; Liu WR
    ACS Chem Biol; 2016 Jul; 11(7):1973-81. PubMed ID: 27152839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of quercetin on the protein-substrate interactions in SIRT6: Insight from MD simulations.
    Zhang H; Zhang J; Zhang HX
    J Mol Graph Model; 2024 Jul; 130():108778. PubMed ID: 38652998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Basis for Activation of Human Sirtuin 6 by Fluvastatin.
    You W; Steegborn C
    ACS Med Chem Lett; 2020 Nov; 11(11):2285-2289. PubMed ID: 33214841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studying SIRT6 regulation using H3K56 based substrate and small molecules.
    Kokkonen P; Rahnasto-Rilla M; Mellini P; Jarho E; Lahtela-Kakkonen M; Kokkola T
    Eur J Pharm Sci; 2014 Oct; 63():71-6. PubMed ID: 25004411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.