These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 34095222)

  • 1. HEMNMA-3D: Cryo Electron Tomography Method Based on Normal Mode Analysis to Study Continuous Conformational Variability of Macromolecular Complexes.
    Harastani M; Eltsov M; Leforestier A; Jonic S
    Front Mol Biosci; 2021; 8():663121. PubMed ID: 34095222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Electron Microscopy Normal Mode Analysis with Scipion.
    Harastani M; Sorzano COS; Jonić S
    Protein Sci; 2020 Jan; 29(1):223-236. PubMed ID: 31693263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ContinuousFlex: Software package for analyzing continuous conformational variability of macromolecules in cryo electron microscopy and tomography data.
    Harastani M; Vuillemot R; Hamitouche I; Moghadam NB; Jonic S
    J Struct Biol; 2022 Dec; 214(4):107906. PubMed ID: 36244611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TomoFlow: Analysis of Continuous Conformational Variability of Macromolecules in Cryogenic Subtomograms based on 3D Dense Optical Flow.
    Harastani M; Eltsov M; Leforestier A; Jonic S
    J Mol Biol; 2022 Jan; 434(2):167381. PubMed ID: 34848215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepHEMNMA: ResNet-based hybrid analysis of continuous conformational heterogeneity in cryo-EM single particle images.
    Hamitouche I; Jonic S
    Front Mol Biosci; 2022; 9():965645. PubMed ID: 36158571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MDTOMO method for continuous conformational variability analysis in cryo electron subtomograms based on molecular dynamics simulations.
    Vuillemot R; Rouiller I; Jonić S
    Sci Rep; 2023 Jun; 13(1):10596. PubMed ID: 37391578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iterative elastic 3D-to-2D alignment method using normal modes for studying structural dynamics of large macromolecular complexes.
    Jin Q; Sorzano CO; de la Rosa-Trevín JM; Bilbao-Castro JR; Núñez-Ramírez R; Llorca O; Tama F; Jonić S
    Structure; 2014 Mar; 22(3):496-506. PubMed ID: 24508340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput subtomogram alignment and classification by Fourier space constrained fast volumetric matching.
    Xu M; Beck M; Alber F
    J Struct Biol; 2012 May; 178(2):152-64. PubMed ID: 22420977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MDSPACE: Extracting Continuous Conformational Landscapes from Cryo-EM Single Particle Datasets Using 3D-to-2D Flexible Fitting based on Molecular Dynamics Simulation.
    Vuillemot R; Mirzaei A; Harastani M; Hamitouche I; Fréchin L; Klaholz BP; Miyashita O; Tama F; Rouiller I; Jonic S
    J Mol Biol; 2023 May; 435(9):167951. PubMed ID: 36638910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated target segmentation and real space fast alignment methods for high-throughput classification and averaging of crowded cryo-electron subtomograms.
    Xu M; Alber F
    Bioinformatics; 2013 Jul; 29(13):i274-82. PubMed ID: 23812994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid Electron Microscopy Normal Mode Analysis graphical interface and protocol.
    Sorzano CO; de la Rosa-Trevín JM; Tama F; Jonić S
    J Struct Biol; 2014 Nov; 188(2):134-41. PubMed ID: 25268657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TomoMiner and TomoMinerCloud: A Software Platform for Large-Scale Subtomogram Structural Analysis.
    Frazier Z; Xu M; Alber F
    Structure; 2017 Jun; 25(6):951-961.e2. PubMed ID: 28552576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging.
    Himes BA; Zhang P
    Nat Methods; 2018 Nov; 15(11):955-961. PubMed ID: 30349041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of scoring functions to rank the quality of 3D subtomogram clusters from cryo-electron tomography.
    Singla J; White KL; Stevens RC; Alber F
    J Struct Biol; 2021 Jun; 213(2):107727. PubMed ID: 33753204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autofocused 3D classification of cryoelectron subtomograms.
    Chen Y; Pfeffer S; Fernández JJ; Sorzano CO; Förster F
    Structure; 2014 Oct; 22(10):1528-37. PubMed ID: 25242455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ structure determination at nanometer resolution using TYGRESS.
    Song K; Shang Z; Fu X; Lou X; Grigorieff N; Nicastro D
    Nat Methods; 2020 Feb; 17(2):201-208. PubMed ID: 31768058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning structural heterogeneity from cryo-electron sub-tomograms with tomoDRGN.
    Powell BM; Davis JH
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical autoclassification of cryo-EM samples and macromolecular energy landscape determination.
    Gomez-Blanco J; Kaur S; Strauss M; Vargas J
    Comput Methods Programs Biomed; 2022 Apr; 216():106673. PubMed ID: 35149430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A feature-guided, focused 3D signal permutation method for subtomogram averaging.
    Peters JJ; Leitz J; Guo Q; Beck F; Baumeister W; Brunger AT
    J Struct Biol; 2022 Jun; 214(2):107851. PubMed ID: 35346811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION.
    Bharat TA; Scheres SH
    Nat Protoc; 2016 Nov; 11(11):2054-65. PubMed ID: 27685097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.