These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 34095238)

  • 21. The "Beam-Me-In Strategy" - remote haptic therapist-patient interaction with two exoskeletons for stroke therapy.
    Baur K; Rohrbach N; Hermsdörfer J; Riener R; Klamroth-Marganska V
    J Neuroeng Rehabil; 2019 Jul; 16(1):85. PubMed ID: 31296226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of a Wearable Fingertip Haptic Device for Remote Palpation: Characterisation and Interface with a Virtual Environment.
    Tzemanaki A; Al GA; Melhuish C; Dogramadzi S
    Front Robot AI; 2018; 5():62. PubMed ID: 33500941
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterisation and evaluation of soft elastomeric actuators for hand assistive and rehabilitation applications.
    Yap HK; Lim JH; Nasrallah F; Cho Hong Goh J; Yeow CH
    J Med Eng Technol; 2016; 40(4):199-209. PubMed ID: 27007297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Jointless structure and under-actuation mechanism for compact hand exoskeleton.
    In H; Cho KJ; Kim K; Lee B
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975394. PubMed ID: 22275598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development and Validation of a System for the Assessment and Recovery of Grip Force Control.
    Lapresa M; Lauretti C; Scotto di Luzio F; Bressi F; Santacaterina F; Bravi M; Guglielmelli E; Zollo L; Cordella F
    Bioengineering (Basel); 2023 Jan; 10(1):. PubMed ID: 36671635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variable Admittance Control of a Hand Exoskeleton for Virtual Reality-Based Rehabilitation Tasks.
    Topini A; Sansom W; Secciani N; Bartalucci L; Ridolfi A; Allotta B
    Front Neurorobot; 2021; 15():789743. PubMed ID: 35095457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An online method to monitor hand muscle tone during robot-assisted rehabilitation.
    Ranzani R; Chiriatti G; Schwarz A; Devittori G; Gassert R; Lambercy O
    Front Robot AI; 2023; 10():1093124. PubMed ID: 36814447
    [No Abstract]   [Full Text] [Related]  

  • 30. A force augmenting exoskeleton for the human hand designed for pinching and grasping.
    Triolo ER; Stella MH; BuSha BF
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1875-1878. PubMed ID: 30440762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Wearable Soft Robotic Exoskeleton for Hip Flexion Rehabilitation.
    Miller-Jackson TM; Natividad RF; Lim DYL; Hernandez-Barraza L; Ambrose JW; Yeow RC
    Front Robot AI; 2022; 9():835237. PubMed ID: 35572371
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and experimental testing of a force-augmenting exoskeleton for the human hand.
    Triolo ER; BuSha BF
    J Neuroeng Rehabil; 2022 Feb; 19(1):23. PubMed ID: 35189922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compensation or Restoration: Closed-Loop Feedback of Movement Quality for Assisted Reach-to-Grasp Exercises with a Multi-Joint Arm Exoskeleton.
    Grimm F; Naros G; Gharabaghi A
    Front Neurosci; 2016; 10():280. PubMed ID: 27445655
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Soft Wearable Skin-Stretch Device for Haptic Feedback Using Twisted and Coiled Polymer Actuators.
    Chossat JB; Chen DKY; Park YL; Shull PB
    IEEE Trans Haptics; 2019; 12(4):521-532. PubMed ID: 31562105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A General Purpose Robotic Hand Exoskeleton With Series Elastic Actuation.
    Refour EM; Sebastian B; Chauhan RJ; Ben-Tzvi P
    J Mech Robot; 2019 Dec; 11(6):. PubMed ID: 33912323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring New Potential Applications for Hand Exoskeletons: Power Grip to Assist Human Standing.
    Diez JA; Santamaria V; Khan MI; Catalán JM; Garcia-Aracil N; Agrawal SK
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of EMG signals for controlling exoskeleton robots.
    Fleischer C; Wege A; Kondak K; Hommel G
    Biomed Tech (Berl); 2006 Dec; 51(5-6):314-9. PubMed ID: 17155866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors.
    Yap HK; Lim JH; Nasrallah F; Yeow CH
    Front Neurosci; 2017; 11():547. PubMed ID: 29062267
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exodex Adam-A Reconfigurable Dexterous Haptic User Interface for the Whole Hand.
    Lii NY; Pereira A; Dietl J; Stillfried G; Schmidt A; Beik-Mohammadi H; Baker T; Maier A; Pleintinger B; Chen Z; Elawad A; Mentzer L; Pineault A; Reisich P; Albu-Schäffer A
    Front Robot AI; 2021; 8():716598. PubMed ID: 35309724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advanced Myoelectric Control for Robotic Hand-Assisted Training: Outcome from a Stroke Patient.
    Lu Z; Tong KY; Shin H; Li S; Zhou P
    Front Neurol; 2017; 8():107. PubMed ID: 28373860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.