BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34095347)

  • 1. Fast Switching Dual-Frequency Nematic Liquid Crystal Tunable Filters.
    Melnyk O; Jones R; Macêdo R; Garbovskiy Y; Hagen G; Glushchenko AV; Spendier K; Camley RE
    ACS Photonics; 2021 Apr; 8(4):1222-1231. PubMed ID: 34095347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuously tunable and fast-response terahertz metamaterials using in-plane-switching dual-frequency liquid crystal cells.
    Chen CC; Chiang WF; Tsai MC; Jiang SA; Chang TH; Wang SH; Huang CY
    Opt Lett; 2015 May; 40(9):2021-4. PubMed ID: 25927774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helical Nanostructures of Ferroelectric Liquid Crystals as Fast Phase Retarders for Spectral Information Extraction Devices: A Comparison with the Nematic Liquid Crystal Phase Retarders.
    AbuLeil MJ; Pasha D; August I; Pozhidaev EP; Barbashov VA; Tkachenko TP; Kuznetsov AV; Abdulhalim I
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable optical filter having a large dynamic range.
    Aharon O; Abdulhalim I
    Opt Lett; 2009 Jul; 34(14):2114-6. PubMed ID: 19823519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-loss birefringent spectral filters comprising three identical retarders.
    Ye C
    Appl Opt; 2006 Nov; 45(31):8044-51. PubMed ID: 17068546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Widely tunable chiral nematic liquid crystal optical filter with microsecond switching time.
    Mohammadimasoudi M; Beeckman J; Shin J; Lee K; Neyts K
    Opt Express; 2014 Aug; 22(16):19098-107. PubMed ID: 25320996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically driving bandwidth tunable guided-mode resonance filter based on a twisted nematic liquid crystal polarization rotator.
    Qian L; Zhang D; Dai B; Huang Y; Tao C; Hong R; Zhuang S
    Opt Lett; 2015 Mar; 40(5):713-6. PubMed ID: 25723414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the Pass-Band Return Loss in Liquid Crystal Dual-Mode Bandpass Filters by Microstrip Patch Reshaping.
    Torrecilla J; Urruchi V; Sánchez-Pena JM; Bennis N; García A; Segovia D
    Materials (Basel); 2014 Jun; 7(6):4524-4535. PubMed ID: 28788690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical filter with tunable wavelength and bandwidth based on cholesteric liquid crystals.
    Huang Y; Zhang S
    Opt Lett; 2011 Dec; 36(23):4563-5. PubMed ID: 22139243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuously tunable smectic A(*) liquid-crystal color filter.
    Sharp GD; Johnson KM; Doroski D
    Opt Lett; 1990 May; 15(10):523-5. PubMed ID: 19767995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method to reduce sidelobes of multistage Lyot filters.
    Yang G; Zheng Z; Li H; Liu X
    Appl Opt; 2010 Mar; 49(8):1280-7. PubMed ID: 20220883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of the birefringences of nematic liquid crystals at optical and infrared wavelengths.
    Simpson SH; Richardson RM; Hanna S
    J Chem Phys; 2005 Oct; 123(13):134904. PubMed ID: 16223328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-channel Si-liquid crystal filter with fine tuning capability of individual channels for compensation of fabrication tolerances.
    Baldycheva A; Tolmachev VA; Berwick K; Perova TS
    Nanoscale Res Lett; 2012 Jul; 7(1):387. PubMed ID: 22788755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable thin-film optical filters for hyperspectral microscopy.
    Favreau PF; Rich TC; Prabhat P; Leavesley SJ
    Proc SPIE Int Soc Opt Eng; 2013 Feb; 8589():. PubMed ID: 34045788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable optical filters with wide wavelength range based on porous multilayers.
    Mescheder U; Khazi I; Kovacs A; Ivanov A
    Nanoscale Res Lett; 2014; 9(1):427. PubMed ID: 25232293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrahigh 47-dB optical drop rejection multiwavelength add--drop filter using spatial filtering and dual bulk acousto-optic tunable filters.
    Riza NA; Chen J
    Opt Lett; 1998 Jun; 23(12):945-7. PubMed ID: 18087392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optofluidic-tunable color filters and spectroscopy based on liquid-crystal microflows.
    Cuennet JG; Vasdekis AE; Psaltis D
    Lab Chip; 2013 Jul; 13(14):2721-6. PubMed ID: 23752198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Second-Order Reflection Bands from a Cholesteric Liquid Crystal Cell Based on a Wavelength-Swept Laser.
    Ahn S; Ko MO; Kim JH; Chen Z; Jeon MY
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid-crystal-based magnetically tunable terahertz achromatic quarter-wave plate.
    Hsieh CF; Yang CS; Shih FC; Pan RP; Pan CL
    Opt Express; 2019 Apr; 27(7):9933-9940. PubMed ID: 31045140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of a spatially tunable band reject filter with a very wide tunability range based on a chiral nematic liquid crystal polymer.
    Mohammadimasoudi M; Khoshkhati F; Sohrabnavi H; Neyts K
    Opt Lett; 2022 Aug; 47(15):3760-3763. PubMed ID: 35913308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.