These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 34095646)
1. Flow-induced segregation and dynamics of red blood cells in sickle cell disease. Zhang X; Caruso C; Lam WA; Graham MD Phys Rev Fluids; 2020 May; 5(5):. PubMed ID: 34095646 [TBL] [Abstract][Full Text] [Related]
2. Marginated aberrant red blood cells induce pathologic vascular stress fluctuations in a computational model of hematologic disorders. Cheng X; Caruso C; Lam WA; Graham MD bioRxiv; 2023 May; ():. PubMed ID: 37293094 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of deformable straight and curved prolate capsules in simple shear flow. Zhang X; Lam WA; Graham MD Phys Rev Fluids; 2019 Apr; 4(4):. PubMed ID: 31777765 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of Individual Red Blood Cells Under Shear Flow: A Way to Discriminate Deformability Alterations. Atwell S; Badens C; Charrier A; Helfer E; Viallat A Front Physiol; 2021; 12():775584. PubMed ID: 35069240 [TBL] [Abstract][Full Text] [Related]
5. Less-deformable erythrocyte subpopulations biomechanically induce endothelial inflammation in sickle cell disease. Caruso C; Cheng X; Michaud ME; Szafraniec HM; Thomas BE; Fay ME; Mannino RG; Zhang X; Sakurai Y; Li W; Myers DR; Joiner CH; Wood DK; Bhasin M; Graham MD; Lam WA Blood; 2024 Nov; 144(19):2050-2062. PubMed ID: 39178344 [TBL] [Abstract][Full Text] [Related]
6. Segregation by membrane rigidity in flowing binary suspensions of elastic capsules. Kumar A; Graham MD Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066316. PubMed ID: 22304199 [TBL] [Abstract][Full Text] [Related]
7. Shape-mediated margination and demargination in flowing multicomponent suspensions of deformable capsules. Sinha K; Graham MD Soft Matter; 2016 Feb; 12(6):1683-700. PubMed ID: 26679746 [TBL] [Abstract][Full Text] [Related]
8. Presence of Rigid Red Blood Cells in Blood Flow Interferes with the Vascular Wall Adhesion of Leukocytes. Gutierrez M; Fish MB; Golinski AW; Eniola-Adefeso O Langmuir; 2018 Feb; 34(6):2363-2372. PubMed ID: 29347819 [TBL] [Abstract][Full Text] [Related]
9. Internal Viscosity-Dependent Margination of Red Blood Cells in Microfluidic Channels. Ahmed F; Mehrabadi M; Liu Z; Barabino GA; Aidun CK J Biomech Eng; 2018 Jun; 140(6):. PubMed ID: 29715334 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of margination in confined flows of blood and other multicomponent suspensions. Kumar A; Graham MD Phys Rev Lett; 2012 Sep; 109(10):108102. PubMed ID: 23005332 [TBL] [Abstract][Full Text] [Related]
11. Ex Vivo Activation of Red Blood Cell Senescence by Plasma from Sickle-Cell Disease Patients: Correlation between Markers and Adhesion Consequences during Acute Disease Events. Chadebech P; Bodivit G; Di Liberto G; Jouard A; Vasseur C; Pirenne F; Bartolucci P Biomolecules; 2021 Jun; 11(7):. PubMed ID: 34208829 [TBL] [Abstract][Full Text] [Related]
12. The Red Blood Cell-Inflammation Vicious Circle in Sickle Cell Disease. Nader E; Romana M; Connes P Front Immunol; 2020; 11():454. PubMed ID: 32231672 [TBL] [Abstract][Full Text] [Related]
13. Red blood cell mechanical sensitivity improves in patients with sickle cell disease undergoing chronic transfusion after prolonged, subhemolytic shear exposure. Simmonds MJ; Suriany S; Ponce D; Detterich JA Transfusion; 2018 Dec; 58(12):2788-2796. PubMed ID: 30325033 [TBL] [Abstract][Full Text] [Related]
14. Marginated aberrant red blood cells induce pathologic vascular stress fluctuations in a computational model of hematologic disorders. Cheng X; Caruso C; Lam WA; Graham MD Sci Adv; 2023 Dec; 9(48):eadj6423. PubMed ID: 38019922 [TBL] [Abstract][Full Text] [Related]
15. Shear rate dependent margination of sphere-like, oblate-like and prolate-like micro-particles within blood flow. Ye H; Shen Z; Li Y Soft Matter; 2018 Sep; 14(36):7401-7419. PubMed ID: 30187053 [TBL] [Abstract][Full Text] [Related]
16. A combined computational and experimental investigation of the filtration function of splenic macrophages in sickle cell disease. Li G; Qiang Y; Li H; Li X; Buffet PA; Dao M; Karniadakis GE PLoS Comput Biol; 2023 Dec; 19(12):e1011223. PubMed ID: 38091361 [TBL] [Abstract][Full Text] [Related]
17. Dynamic deformability of sickle red blood cells in microphysiological flow. Alapan Y; Matsuyama Y; Little JA; Gurkan UA Technology (Singap World Sci); 2016 Jun; 4(2):71-79. PubMed ID: 27437432 [TBL] [Abstract][Full Text] [Related]
18. The influence of red blood cell deformability on hematocrit profiles and platelet margination. Czaja B; Gutierrez M; Závodszky G; de Kanter D; Hoekstra A; Eniola-Adefeso O PLoS Comput Biol; 2020 Mar; 16(3):e1007716. PubMed ID: 32163405 [TBL] [Abstract][Full Text] [Related]
19. Microfluidics in Sickle Cell Disease Research: State of the Art and a Perspective Beyond the Flow Problem. Aich A; Lamarre Y; Sacomani DP; Kashima S; Covas DT; de la Torre LG Front Mol Biosci; 2020; 7():558982. PubMed ID: 33763448 [TBL] [Abstract][Full Text] [Related]
20. Motion of red blood cells near microvessel walls: effects of a porous wall layer. Hariprasad DS; Secomb TW J Fluid Mech; 2012 Aug; 705():195-212. PubMed ID: 23493820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]