BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34095659)

  • 1. An Artificial Intelligence-Based Model for Performance Prediction of Acid Fracturing in Naturally Fractured Reservoirs.
    Hassan A; Aljawad MS; Mahmoud M
    ACS Omega; 2021 Jun; 6(21):13654-13670. PubMed ID: 34095659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mineralogy Impact on Acid Fracture Design in Naturally Fractured Carbonates.
    Aljawad MS
    ACS Omega; 2023 Apr; 8(13):12194-12205. PubMed ID: 37033810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydraulic Fracture Propagation and Analysis in Heterogeneous Middle Eastern Tight Gas Reservoirs: Influence of Natural Fractures and Well Placement.
    Al Mteiri S; Suboyin A; Rahman MM; Haroun M
    ACS Omega; 2021 Jan; 6(1):799-815. PubMed ID: 33458531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning-Based Propped Fracture Conductivity Correlations of Several Shale Formations.
    Desouky M; Tariq Z; Aljawad MS; Alhoori H; Mahmoud M; Abdulraheem A
    ACS Omega; 2021 Jul; 6(29):18782-18792. PubMed ID: 34337218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of tight gas reservoir fracturing parameters via gradient boosting regression modeling.
    Yang H; Liu X; Chu X; Xie B; Zhu G; Li H; Yang J
    Heliyon; 2024 Mar; 10(5):e27015. PubMed ID: 38463839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of fracture conductivity prediction using ensemble methods in the acid fracturing treatment in oil wells.
    Kharazi Esfahani P; Akbari M; Khalili Y
    Sci Rep; 2024 Jan; 14(1):648. PubMed ID: 38182684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning-Based Accelerated Approaches to Infer Breakdown Pressure of Several Unconventional Rock Types.
    Tariq Z; Yan B; Sun S; Gudala M; Aljawad MS; Murtaza M; Mahmoud M
    ACS Omega; 2022 Nov; 7(45):41314-41330. PubMed ID: 36406508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction.
    Tabbussum R; Dar AQ
    Environ Sci Pollut Res Int; 2021 May; 28(20):25265-25282. PubMed ID: 33453033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms.
    Guo C; Wei M; Liu H
    PLoS One; 2018; 13(1):e0188480. PubMed ID: 29320489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fracability Evaluation Method of a Fractured-Vuggy Carbonate Reservoir in the Shunbei Block.
    Zhang Y; Zhang L; He J; Zhang H; Zhang X; Liu X
    ACS Omega; 2023 May; 8(17):15810-15818. PubMed ID: 37151545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on the influence factors for the fracturing effect in fractured tight reservoirs using the numerical simulation.
    Xiong J; Liu J; Lei W; Liu X; Liang L; Ding Y
    Sci Prog; 2022; 105(1):368504211070396. PubMed ID: 35037795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-Driven Acid Fracture Conductivity Correlations Honoring Different Mineralogy and Etching Patterns.
    Desouky M; Tariq Z; Aljawad MS; Alhoori H; Mahmoud M; AlShehri D
    ACS Omega; 2020 Jul; 5(27):16919-16931. PubMed ID: 32685861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of pore structure and permeability in tight carbonate reservoir based on machine learning (ML) algorithm using SEM images of Jaisalmer sub-basin, India.
    Yalamanchi P; Datta Gupta S
    Sci Rep; 2024 Jan; 14(1):930. PubMed ID: 38195867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of Fracturing Fluid and Retarded Acid for Stimulating Tight Naturally Fractured Bedrock Reservoirs.
    Li Y; Zhou F; Li B; Cheng T; Zhang M; Wang Q; Yao E; Liang T
    ACS Omega; 2022 Jul; 7(29):25122-25131. PubMed ID: 35910177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Correlation for Calculating Water Saturation in Shaly Sandstone Reservoirs Using Artificial Intelligence: Case Study from Egyptian Oil Fields.
    Abdel Azim R; Hamada G
    ACS Omega; 2022 Aug; 7(34):29666-29674. PubMed ID: 36061681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP.
    Jalal FE; Xu Y; Iqbal M; Javed MF; Jamhiri B
    J Environ Manage; 2021 Jul; 289():112420. PubMed ID: 33831756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time prediction of Poisson's ratio from drilling parameters using machine learning tools.
    Siddig O; Gamal H; Elkatatny S; Abdulraheem A
    Sci Rep; 2021 Jun; 11(1):12611. PubMed ID: 34131264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Correlation for Calculating Water Saturation Based on Permeability, Porosity, and Resistivity Index in Carbonate Reservoirs.
    Gomaa S; Soliman AA; Mohamed A; Emara R; Attia AM
    ACS Omega; 2022 Feb; 7(4):3549-3556. PubMed ID: 35128262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea.
    Park Y; Cho KH; Park J; Cha SM; Kim JH
    Sci Total Environ; 2015 Jan; 502():31-41. PubMed ID: 25241206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs.
    Zhang Z; Li X
    Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.