BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

655 related articles for article (PubMed ID: 34096100)

  • 1. Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability.
    Chen Y; Wang T; Tian H; Su D; Zhang Q; Wang G
    Adv Mater; 2021 Jul; 33(29):e2003666. PubMed ID: 34096100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrolyte Regulation towards Stable Lithium-Metal Anodes in Lithium-Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes.
    Chen WJ; Li BQ; Zhao CX; Zhao M; Yuan TQ; Sun RC; Huang JQ; Zhang Q
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):10732-10745. PubMed ID: 31746521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal-Sulfur and Selenium Batteries.
    Hao H; Hutter T; Boyce BL; Watt J; Liu P; Mitlin D
    Chem Rev; 2022 May; 122(9):8053-8125. PubMed ID: 35349271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced Separators for Lithium-Ion and Lithium-Sulfur Batteries: A Review of Recent Progress.
    Xiang Y; Li J; Lei J; Liu D; Xie Z; Qu D; Li K; Deng T; Tang H
    ChemSusChem; 2016 Nov; 9(21):3023-3039. PubMed ID: 27667306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Li
    Jiang J; Fan Q; Chou S; Guo Z; Konstantinov K; Liu H; Wang J
    Small; 2021 Mar; 17(9):e1903934. PubMed ID: 31657137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Hollow Porous Carbon Materials for Lithium-Sulfur Batteries.
    Fu A; Wang C; Pei F; Cui J; Fang X; Zheng N
    Small; 2019 Mar; 15(10):e1804786. PubMed ID: 30721557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.
    Peng HJ; Huang JQ; Zhang Q
    Chem Soc Rev; 2017 Aug; 46(17):5237-5288. PubMed ID: 28783188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries.
    Liu X; Huang JQ; Zhang Q; Mai L
    Adv Mater; 2017 May; 29(20):. PubMed ID: 28160327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress in High-Performance Lithium Sulfur Batteries: The Emerging Strategies for Advanced Separators/Electrolytes Based on Nanomaterials and Corresponding Interfaces.
    Wang X; Deng N; Wei L; Yang Q; Xiang H; Wang M; Cheng B; Kang W
    Chem Asian J; 2021 Oct; 16(19):2852-2870. PubMed ID: 34265166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of recent developments in rechargeable lithium-sulfur batteries.
    Kang W; Deng N; Ju J; Li Q; Wu D; Ma X; Li L; Naebe M; Cheng B
    Nanoscale; 2016 Sep; 8(37):16541-16588. PubMed ID: 27714087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium-Air Batteries: Air-Electrochemistry and Anode Stabilization.
    Chen K; Yang DY; Huang G; Zhang XB
    Acc Chem Res; 2021 Feb; 54(3):632-641. PubMed ID: 33449629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoengineering to achieve high efficiency practical lithium-sulfur batteries.
    Cha E; Patel M; Bhoyate S; Prasad V; Choi W
    Nanoscale Horiz; 2020 May; 5(5):808-831. PubMed ID: 32159194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward High-Energy-Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic Electrolytes.
    Wang X; Kerr R; Chen F; Goujon N; Pringle JM; Mecerreyes D; Forsyth M; Howlett PC
    Adv Mater; 2020 May; 32(18):e1905219. PubMed ID: 31961989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced Polymers in Cathodes and Electrolytes for Lithium-Sulfur Batteries: Progress and Prospects.
    Song Z; Jiang W; Li B; Qu Y; Mao R; Jian X; Hu F
    Small; 2024 May; 20(19):e2308550. PubMed ID: 38282057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in cathode materials for rechargeable lithium-sulfur batteries.
    Li F; Liu Q; Hu J; Feng Y; He P; Ma J
    Nanoscale; 2019 Sep; 11(33):15418-15439. PubMed ID: 31408082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Perspective toward Practical Lithium-Sulfur Batteries.
    Zhao M; Li BQ; Zhang XQ; Huang JQ; Zhang Q
    ACS Cent Sci; 2020 Jul; 6(7):1095-1104. PubMed ID: 32724844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Lithium Metal Anodes Realized by Lithiophilic 3D Porous Current Collectors for Constructing High-Energy Lithium-Sulfur Batteries.
    Pei F; Fu A; Ye W; Peng J; Fang X; Wang MS; Zheng N
    ACS Nano; 2019 Jul; 13(7):8337-8346. PubMed ID: 31287646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.