These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34096304)

  • 21. Magnetodielectric Properties of Ordered Microstructured Polydimethylsiloxane-Based Magnetorheological Elastomer with Fe
    Zhang C; Liu S; Wei F; Dong L; Zhao D; Ou Y
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbonyl Iron Particles' Enhanced Coating Effect Improves Magnetorheological Fluid's Dispersion Stability.
    Chen F; Zhang J; Guo Q; Liu Y; Liu X; Ding W; Yan S; Yan Z; Li Z
    Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Squeeze-Strengthening Effect of Silicone Oil-Based Magnetorheological Fluid with Nanometer Fe₃O₄ Addition in High-Torque Magnetorheological Brakes.
    Wang N; Liu X; Zhang X
    J Nanosci Nanotechnol; 2019 May; 19(5):2633-2639. PubMed ID: 30501760
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Significant Improvement in Magnetorheological Performance by Controlling Micron Interspaces with High Permeability Submicron Particles.
    Du T; Ma N; Zhao Z; Liu Y; Dong X; Huang H
    Adv Sci (Weinh); 2024 Nov; 11(44):e2407765. PubMed ID: 39377309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultra-precision fabrication of a nickel-phosphorus layer on aluminum substrate by SPDT and MRF.
    Bai Y; Zhang Z; Xue D; Zhang X
    Appl Opt; 2018 Dec; 57(34):F62-F67. PubMed ID: 30645271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-Performance Magnetorheological Suspensions of Pickering-Emulsion-Polymerized Polystyrene/Fe
    Han S; Choi J; Seo YP; Park IJ; Choi HJ; Seo Y
    Langmuir; 2018 Feb; 34(8):2807-2814. PubMed ID: 29376371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Research of polishing process to control the iron contamination on the magnetorheological finished KDP crystal surface.
    Chen S; Li S; Peng X; Hu H; Tie G
    Appl Opt; 2015 Feb; 54(6):1478-84. PubMed ID: 25968216
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solid-Liquid State Transformable Magnetorheological Millirobot.
    Chen Z; Lu W; Li Y; Liu P; Yang Y; Jiang L
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):30007-30020. PubMed ID: 35727886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanostructured magnetic particles with polystyrene and their magnetorheological applications.
    Fang FF; Choi HJ
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2717-21. PubMed ID: 21449461
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magnetic field effects on shear and normal stresses in magnetorheological finishing.
    Lambropoulos JC; Miao C; Jacobs SD
    Opt Express; 2010 Sep; 18(19):19713-23. PubMed ID: 20940866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stribeck Curve of Magnetorheological Fluid within Pin-on-Disc Configuration: An Experimental Investigation.
    Roupec J; Jeniš F; Strecker Z; Kubík M; Macháček O
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33092126
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Minimizing artifact formation in magnetorheological finishing of chemical vapor deposition ZnS flats.
    Kozhinova IA; Romanofsky HJ; Maltsev A; Jacobs SD; Kordonski WI; Gorodkin SR
    Appl Opt; 2005 Aug; 44(22):4671-7. PubMed ID: 16075880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reinforcing Magnetorheological Fluids with Highly Anisotropic 2D Materials.
    Rendos A; Li R; Woodman S; Ling X; Brown KA
    Chemphyschem; 2021 Mar; 22(5):435-440. PubMed ID: 33354890
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a Performance-Enhanced Hybrid Magnetorheological Elastomer-Fluid for Semi-Active Vibration Isolation: Static and Dynamic Experimental Characterization.
    Ali A; Salem AMH; Muthalif AGA; Ramli RB; Julai S
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface Roughness Tuning at Sub-Nanometer Level by Considering the Normal Stress Field in Magnetorheological Finishing.
    Li X; Li Q; Ye Z; Zhang Y; Ye M; Wang C
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Effect of Particle Shapes on the Field-Dependent Rheological Properties of Magnetorheological Greases.
    Mohamad N; ; Mazlan SA; Choi SB; Abdul Aziz SA; Sugimoto M
    Int J Mol Sci; 2019 Mar; 20(7):. PubMed ID: 30934679
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shear stress in magnetorheological finishing for glasses.
    Miao C; Shafrir SN; Lambropoulos JC; Mici J; Jacobs SD
    Appl Opt; 2009 May; 48(13):2585-94. PubMed ID: 19412219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nano-Precision Processing of NiP Coating by Magnetorheological Finishing.
    Xu C; Peng X; Hu H; Liu J; Li H; Luo T; Lai T
    Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rheometric and stability analysis of additive infused magnetorheological fluids: a comparative study.
    Sharmili P; Rajesh S; Mahendran M; Saravanakumar S; Abirami G; Sivakami A; Chokkalingam R
    Eur Phys J E Soft Matter; 2023 Feb; 46(2):6. PubMed ID: 36780045
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of Magnetic Field on Sound Transmission Loss of the Unit Filled with Magnetorheological Fluid.
    Xu X; Wang Y; Wang Y
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.