These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 3409650)
1. Muscular venous blood metabolites during rhythmic forearm exercise while breathing air or normoxic helium and argon gas mixtures. Douguet D; Raynaud J; Capderou A; Pánnier C; Reiss G; Durand J Clin Physiol; 1988 Aug; 8(4):367-78. PubMed ID: 3409650 [TBL] [Abstract][Full Text] [Related]
2. Time course of muscular blood metabolites during forearm rhythmic exercise in hypoxia. Raynaud J; Douguet D; Legros P; Capderou A; Raffestin B; Durand J J Appl Physiol (1985); 1986 Apr; 60(4):1203-8. PubMed ID: 3700304 [TBL] [Abstract][Full Text] [Related]
3. Effect of breathing of a helium-oxygen mixture on the adaptation of the organism to exercise. Debiński W; Kłossowski M; Gembicka D Acta Physiol Pol; 1984; 35(3):285-92. PubMed ID: 6537722 [TBL] [Abstract][Full Text] [Related]
4. Lactate and glucose exchange across the forearm, legs, and splanchnic bed during and after prolonged leg exercise. Ahlborg G; Felig P J Clin Invest; 1982 Jan; 69(1):45-54. PubMed ID: 7054242 [TBL] [Abstract][Full Text] [Related]
5. Effect of breathing of a helium-oxygen mixture on adaptation to effort in humans during high-altitude hypoxia. Debiński W; Kłossowski M; Gembicka D Acta Physiol Pol; 1986; 37(1):32-40. PubMed ID: 3788607 [TBL] [Abstract][Full Text] [Related]
6. [The regulation of breathing during the inhalation of different densities of gas mixtures under increasing muscle work in man]. Segizbaeva MO; Isaev GG Fiziol Zh Im I M Sechenova; 1993 Nov; 79(11):93-102. PubMed ID: 8162112 [TBL] [Abstract][Full Text] [Related]
7. The influence of a respiratory acidosis on the exercise blood lactate response. McLellan TM Eur J Appl Physiol Occup Physiol; 1991; 63(1):6-11. PubMed ID: 1915334 [TBL] [Abstract][Full Text] [Related]
8. Effects of breathing a normoxic helium mixture on exercise tolerance of patients with cystic fibrosis. Martin D; Day J; Ward G; Carter E; Chesrown S Pediatr Pulmonol; 1994 Oct; 18(4):206-10. PubMed ID: 7838618 [TBL] [Abstract][Full Text] [Related]
9. Submaximal exercise with self-contained breathing apparatus: the effects of hyperoxia and inspired gas density. Eves ND; Petersen SR; Jones RL Aviat Space Environ Med; 2003 Oct; 74(10):1040-7. PubMed ID: 14556564 [TBL] [Abstract][Full Text] [Related]
10. Does arterial PCO2 interfere with hypoxia in muscular metabolism in man? Raynaud J; Vargas E; Sant MC; Bordachar J; Escorrou P; Bailliart O; Legros P; Durand J Adv Exp Med Biol; 1990; 277():515-24. PubMed ID: 2128991 [TBL] [Abstract][Full Text] [Related]
11. Acute respiratory muscle unloading by normoxic helium-O₂ breathing reduces the O₂ cost of cycling and perceived exertion in obese adolescents. Salvadego D; Sartorio A; Agosti F; Tringali G; Patrizi A; Mauro AL; Aliverti A; Grassi B Eur J Appl Physiol; 2015 Jan; 115(1):99-109. PubMed ID: 25213005 [TBL] [Abstract][Full Text] [Related]
12. Effects of breathing a normoxic He-O2 gas mixture on exercise tolerance and VO2 max. Powers SK; Jacques M; Richard R; Beadle RE Int J Sports Med; 1986 Aug; 7(4):217-21. PubMed ID: 3759302 [TBL] [Abstract][Full Text] [Related]
13. Effects of pneumoperitoneum with carbon dioxide, argon, or helium on hemodynamic and respiratory function. Junghans T; Böhm B; Gründel K; Schwenk W Arch Surg; 1997 Mar; 132(3):272-8. PubMed ID: 9125027 [TBL] [Abstract][Full Text] [Related]
14. [Effect of helium and argon on the oxygen uptake by lymphocytes]. Govorukha TN; Nazarenko AI; Pinchuk LN; Pinchuk GV Fiziol Zh (1978); 1989; 35(2):93-5. PubMed ID: 2721752 [TBL] [Abstract][Full Text] [Related]
15. Effect of breathing an oxygen-helium mixture under positive pressure on biochemical parameters. Sokołowski E; Markiewicz L; Czerniakowska K; Debiński W Acta Physiol Pol; 1983; 34(3):293-7. PubMed ID: 6372366 [TBL] [Abstract][Full Text] [Related]
16. Effect of hypoxia on arterial and venous blood levels of oxygen, carbon dioxide, hydrogen ions and lactate during incremental forearm exercise. Yoshida T; Udo M; Chida M; Ichioka M; Makiguchi K Eur J Appl Physiol Occup Physiol; 1989; 58(7):772-7. PubMed ID: 2500338 [TBL] [Abstract][Full Text] [Related]
17. Mechanism for glycogenolysis in nonexercising human muscle during and after exercise. Ahlborg G Am J Physiol; 1985 May; 248(5 Pt 1):E540-5. PubMed ID: 3993774 [TBL] [Abstract][Full Text] [Related]
18. Heart rate and ventilation in relation to venous [K+], osmolality, pH, PCO2, PO2, [orthophosphate], and [lactate] at transition from rest to exercise in athletes and non-athletes. Tibes U; Hemmer B; Böning D Eur J Appl Physiol Occup Physiol; 1977 Jan; 36(2):127-40. PubMed ID: 13993 [TBL] [Abstract][Full Text] [Related]
19. Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. Dempsey JA; Hanson PG; Henderson KS J Physiol; 1984 Oct; 355():161-75. PubMed ID: 6436475 [TBL] [Abstract][Full Text] [Related]
20. Ventilatory response to helium-oxygen breathing during exercise: effect of airway anesthesia. Krishnan BS; Clemens RE; Zintel TA; Stockwell MJ; Gallagher CG J Appl Physiol (1985); 1997 Jul; 83(1):82-8. PubMed ID: 9216948 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]