These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 34096501)

  • 1. Temporally delayed linear modelling (TDLM) measures replay in both animals and humans.
    Liu Y; Dolan RJ; Higgins C; Penagos H; Woolrich MW; Ólafsdóttir HF; Barry C; Kurth-Nelson Z; Behrens TE
    Elife; 2021 Jun; 10():. PubMed ID: 34096501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast-backward replay of sequentially memorized items in humans.
    Huang Q; Jia J; Han Q; Luo H
    Elife; 2018 Oct; 7():. PubMed ID: 30334735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced coupling between offline neural replay events and default mode network activation in schizophrenia.
    Nour MM; Liu Y; Higgins C; Woolrich MW; Dolan RJ
    Brain Commun; 2023; 5(2):fcad056. PubMed ID: 36950194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal microstructure of cortical networks (TMCN) underlying task-related differences.
    Banerjee A; Pillai AS; Sperling JR; Smith JF; Horwitz B
    Neuroimage; 2012 Sep; 62(3):1643-57. PubMed ID: 22728151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Group-level spatio-temporal pattern recovery in MEG decoding using multi-task joint feature learning.
    Kia SM; Pedregosa F; Blumenthal A; Passerini A
    J Neurosci Methods; 2017 Jun; 285():97-108. PubMed ID: 28495369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The roles of online and offline replay in planning.
    Eldar E; Lièvre G; Dayan P; Dolan RJ
    Elife; 2020 Jun; 9():. PubMed ID: 32553110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speed of time-compressed forward replay flexibly changes in human episodic memory.
    Michelmann S; Staresina BP; Bowman H; Hanslmayr S
    Nat Hum Behav; 2019 Feb; 3(2):143-154. PubMed ID: 30944439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal uncertainty enhances suppression of neural responses to predictable visual stimuli.
    Nara S; Lizarazu M; Richter CG; Dima DC; Cichy RM; Bourguignon M; Molinaro N
    Neuroimage; 2021 Oct; 239():118314. PubMed ID: 34175428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding oscillatory representations and mechanisms in memory.
    Jafarpour A; Horner AJ; Fuentemilla L; Penny WD; Duzel E
    Neuropsychologia; 2013 Mar; 51(4):772-80. PubMed ID: 22561180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theta-coupled periodic replay in working memory.
    Fuentemilla L; Penny WD; Cashdollar N; Bunzeck N; Düzel E
    Curr Biol; 2010 Apr; 20(7):606-12. PubMed ID: 20303266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Neocortical Neurosolver (HNN), a new software tool for interpreting the cellular and network origin of human MEG/EEG data.
    Neymotin SA; Daniels DS; Caldwell B; McDougal RA; Carnevale NT; Jas M; Moore CI; Hines ML; Hämäläinen M; Jones SR
    Elife; 2020 Jan; 9():. PubMed ID: 31967544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired neural replay of inferred relationships in schizophrenia.
    Nour MM; Liu Y; Arumuham A; Kurth-Nelson Z; Dolan RJ
    Cell; 2021 Aug; 184(16):4315-4328.e17. PubMed ID: 34197734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Temporal Signature of Memories: Identification of a General Mechanism for Dynamic Memory Replay in Humans.
    Michelmann S; Bowman H; Hanslmayr S
    PLoS Biol; 2016 Aug; 14(8):e1002528. PubMed ID: 27494601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How our understanding of memory replay evolves.
    Chen ZS; Wilson MA
    J Neurophysiol; 2023 Mar; 129(3):552-580. PubMed ID: 36752404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different computations over the same inputs produce selective behavior in algorithmic brain networks.
    Jaworska K; Yan Y; van Rijsbergen NJ; Ince RAA; Schyns PG
    Elife; 2022 Feb; 11():. PubMed ID: 35174783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct dorsal and ventral streams for binocular rivalry dominance and suppression revealed by magnetoencephalography.
    Bock EA; Fesi JD; Da Silva Castenheira J; Baillet S; Mendola JD
    Eur J Neurosci; 2023 Apr; 57(8):1317-1334. PubMed ID: 36878869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of fMRI patterns reflect sub-second activation sequences and reveal replay in human visual cortex.
    Wittkuhn L; Schuck NW
    Nat Commun; 2021 Mar; 12(1):1795. PubMed ID: 33741933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and detecting deep brain activity with MEG & EEG.
    Attal Y; Bhattacharjee M; Yelnik J; Cottereau B; Lefèvre J; Okada Y; Bardinet E; Chupin M; Baillet S
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4937-40. PubMed ID: 18003114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RatInABox, a toolkit for modelling locomotion and neuronal activity in continuous environments.
    George TM; Rastogi M; de Cothi W; Clopath C; Stachenfeld K; Barry C
    Elife; 2024 Feb; 13():. PubMed ID: 38334473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous recording of MEG, EEG and intracerebral EEG during visual stimulation: from feasibility to single-trial analysis.
    Dubarry AS; Badier JM; Trébuchon-Da Fonseca A; Gavaret M; Carron R; Bartolomei F; Liégeois-Chauvel C; Régis J; Chauvel P; Alario FX; Bénar CG
    Neuroimage; 2014 Oct; 99():548-58. PubMed ID: 24862073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.