These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 34096562)
1. Ultralow-power flexible transparent carbon nanotube synaptic transistors for emotional memory. Wang Y; Huang W; Zhang Z; Fan L; Huang Q; Wang J; Zhang Y; Zhang M Nanoscale; 2021 Jul; 13(26):11360-11369. PubMed ID: 34096562 [TBL] [Abstract][Full Text] [Related]
2. Flexible Carbon Nanotube Synaptic Transistor for Neurological Electronic Skin Applications. Wan H; Cao Y; Lo LW; Zhao J; Sepúlveda N; Wang C ACS Nano; 2020 Aug; 14(8):10402-10412. PubMed ID: 32678612 [TBL] [Abstract][Full Text] [Related]
3. Emulation of Synaptic Plasticity on a Cobalt-Based Synaptic Transistor for Neuromorphic Computing. Monalisha P; Kumar APS; Wang XR; Piramanayagam SN ACS Appl Mater Interfaces; 2022 Mar; 14(9):11864-11872. PubMed ID: 35229606 [TBL] [Abstract][Full Text] [Related]
4. Oxide Neuromorphic Transistors Gated by Polyvinyl Alcohol Solid Electrolytes with Ultralow Power Consumption. Guo LQ; Han H; Zhu LQ; Guo YB; Yu F; Ren ZY; Xiao H; Ge ZY; Ding JN ACS Appl Mater Interfaces; 2019 Aug; 11(31):28352-28358. PubMed ID: 31291719 [TBL] [Abstract][Full Text] [Related]
5. Flexible and Transparent Artificial Synapse Devices Based on Thin-Film Transistors with Nanometer Thickness. Dai C; Huo C; Qi S; Dai M; Webster T; Xiao H Int J Nanomedicine; 2020; 15():8037-8043. PubMed ID: 33116516 [TBL] [Abstract][Full Text] [Related]
6. Multi-terminal ionic-gated low-power silicon nanowire synaptic transistors with dendritic functions for neuromorphic systems. Li X; Yu B; Wang B; Bao L; Zhang B; Li H; Yu Z; Zhang T; Yang Y; Huang R; Wu Y; Li M Nanoscale; 2020 Aug; 12(30):16348-16358. PubMed ID: 32725043 [TBL] [Abstract][Full Text] [Related]
7. The Design of 3D-Interface Architecture in an Ultralow-Power, Electrospun Single-Fiber Synaptic Transistor for Neuromorphic Computing. Liu D; Shi Q; Dai S; Huang J Small; 2020 Apr; 16(13):e1907472. PubMed ID: 32068955 [TBL] [Abstract][Full Text] [Related]
8. Artificial Synapses Emulated by an Electrolyte-Gated Tungsten-Oxide Transistor. Yang JT; Ge C; Du JY; Huang HY; He M; Wang C; Lu HB; Yang GZ; Jin KJ Adv Mater; 2018 Jul; ():e1801548. PubMed ID: 29974526 [TBL] [Abstract][Full Text] [Related]
9. Degradable Photonic Synaptic Transistors Based on Natural Biomaterials and Carbon Nanotubes. Ou Q; Yang B; Zhang J; Liu D; Chen T; Wang X; Hao D; Lu Y; Huang J Small; 2021 Mar; 17(10):e2007241. PubMed ID: 33590701 [TBL] [Abstract][Full Text] [Related]
10. Aligned Carbon Nanotube Synaptic Transistors for Large-Scale Neuromorphic Computing. Sanchez Esqueda I; Yan X; Rutherglen C; Kane A; Cain T; Marsh P; Liu Q; Galatsis K; Wang H; Zhou C ACS Nano; 2018 Jul; 12(7):7352-7361. PubMed ID: 29944826 [TBL] [Abstract][Full Text] [Related]
11. Mimicking Neurotransmitter Activity and Realizing Algebraic Arithmetic on Flexible Protein-Gated Oxide Neuromorphic Transistors. Li ZY; Zhu LQ; Guo LQ; Ren ZY; Xiao H; Cai JC ACS Appl Mater Interfaces; 2021 Feb; 13(6):7784-7791. PubMed ID: 33533611 [TBL] [Abstract][Full Text] [Related]
12. Carbon Nanotube-Based Flexible Ferroelectric Synaptic Transistors for Neuromorphic Computing. Xia F; Xia T; Xiang L; Ding S; Li S; Yin Y; Xi M; Jin C; Liang X; Hu Y ACS Appl Mater Interfaces; 2022 Jul; 14(26):30124-30132. PubMed ID: 35735118 [TBL] [Abstract][Full Text] [Related]
13. Multimodal Artificial Neurological Sensory-Memory System Based on Flexible Carbon Nanotube Synaptic Transistor. Wan H; Zhao J; Lo LW; Cao Y; Sepúlveda N; Wang C ACS Nano; 2021 Sep; 15(9):14587-14597. PubMed ID: 34472329 [TBL] [Abstract][Full Text] [Related]
14. Threshold-Tunable, Spike-Rate-Dependent Plasticity Originating from Interfacial Proton Gating for Pattern Learning and Memory. Ren ZY; Zhu LQ; Guo YB; Long TY; Yu F; Xiao H; Lu HL ACS Appl Mater Interfaces; 2020 Feb; 12(6):7833-7839. PubMed ID: 31961648 [TBL] [Abstract][Full Text] [Related]
15. Flexible Artificial Synapses with a Biocompatible Maltose-Ascorbic Acid Electrolyte Gate for Neuromorphic Computing. Qin W; Kang BH; Kim HJ ACS Appl Mater Interfaces; 2021 Jul; 13(29):34597-34604. PubMed ID: 34279076 [TBL] [Abstract][Full Text] [Related]
16. Flexible organic field-effect transistor arrays for wearable neuromorphic device applications. Li QX; Wang TY; Wang XL; Chen L; Zhu H; Wu XH; Sun QQ; Zhang DW Nanoscale; 2020 Nov; 12(45):23150-23158. PubMed ID: 33191413 [TBL] [Abstract][Full Text] [Related]
17. Flexible Printed Ultraviolet-to-Near-Infrared Broadband Optoelectronic Carbon Nanotube Synaptic Transistors for Fast and Energy-Efficient Neuromorphic Vision Systems. Li Z; Li M; Zhu T; Li B; Wang Z; Shao S; Deng Z; Zhao X; Liu C; Zhao J Small Methods; 2024 Jun; ():e2400359. PubMed ID: 38845084 [TBL] [Abstract][Full Text] [Related]
18. Inorganic proton conducting electrolyte coupled oxide-based dendritic transistors for synaptic electronics. Wan CJ; Zhu LQ; Zhou JM; Shi Y; Wan Q Nanoscale; 2014 May; 6(9):4491-7. PubMed ID: 24643320 [TBL] [Abstract][Full Text] [Related]
19. Electret-Based Organic Synaptic Transistor for Neuromorphic Computing. Yu R; Li E; Wu X; Yan Y; He W; He L; Chen J; Chen H; Guo T ACS Appl Mater Interfaces; 2020 Apr; 12(13):15446-15455. PubMed ID: 32153175 [TBL] [Abstract][Full Text] [Related]
20. Evolution of Bio-Inspired Artificial Synapses: Materials, Structures, and Mechanisms. Yu H; Wei H; Gong J; Han H; Ma M; Wang Y; Xu W Small; 2021 Mar; 17(9):e2000041. PubMed ID: 32452636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]