These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 34096688)

  • 1. Collective human intelligence outperforms artificial intelligence in a skin lesion classification task.
    Winkler JK; Sies K; Fink C; Toberer F; Enk A; Abassi MS; Fuchs T; Blum A; Stolz W; Coras-Stepanek B; Cipic R; Guther S; Haenssle HA
    J Dtsch Dermatol Ges; 2021 Aug; 19(8):1178-1184. PubMed ID: 34096688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions.
    Haenssle HA; Fink C; Toberer F; Winkler J; Stolz W; Deinlein T; Hofmann-Wellenhof R; Lallas A; Emmert S; Buhl T; Zutt M; Blum A; Abassi MS; Thomas L; Tromme I; Tschandl P; Enk A; Rosenberger A;
    Ann Oncol; 2020 Jan; 31(1):137-143. PubMed ID: 31912788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superior skin cancer classification by the combination of human and artificial intelligence.
    Hekler A; Utikal JS; Enk AH; Hauschild A; Weichenthal M; Maron RC; Berking C; Haferkamp S; Klode J; Schadendorf D; Schilling B; Holland-Letz T; Izar B; von Kalle C; Fröhling S; Brinker TJ;
    Eur J Cancer; 2019 Oct; 120():114-121. PubMed ID: 31518967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computerizing the first step of the two-step algorithm in dermoscopy: A convolutional neural network for differentiating melanocytic from non-melanocytic skin lesions.
    Winkler JK; Kommoss KS; Vollmer AS; Blum A; Stolz W; Kränke T; Hofmann-Wellenhof R; Enk A; Toberer F; Haenssle HA
    Eur J Cancer; 2024 Oct; 210():114297. PubMed ID: 39217816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnostic performance of augmented intelligence with 2D and 3D total body photography and convolutional neural networks in a high-risk population for melanoma under real-world conditions: A new era of skin cancer screening?
    Cerminara SE; Cheng P; Kostner L; Huber S; Kunz M; Maul JT; Böhm JS; Dettwiler CF; Geser A; Jakopović C; Stoffel LM; Peter JK; Levesque M; Navarini AA; Maul LV
    Eur J Cancer; 2023 Sep; 190():112954. PubMed ID: 37453242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas.
    Fink C; Blum A; Buhl T; Mitteldorf C; Hofmann-Wellenhof R; Deinlein T; Stolz W; Trennheuser L; Cussigh C; Deltgen D; Winkler JK; Toberer F; Enk A; Rosenberger A; Haenssle HA
    J Eur Acad Dermatol Venereol; 2020 Jun; 34(6):1355-1361. PubMed ID: 31856342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.
    Haenssle HA; Fink C; Schneiderbauer R; Toberer F; Buhl T; Blum A; Kalloo A; Hassen ABH; Thomas L; Enk A; Uhlmann L; ; Alt C; Arenbergerova M; Bakos R; Baltzer A; Bertlich I; Blum A; Bokor-Billmann T; Bowling J; Braghiroli N; Braun R; Buder-Bakhaya K; Buhl T; Cabo H; Cabrijan L; Cevic N; Classen A; Deltgen D; Fink C; Georgieva I; Hakim-Meibodi LE; Hanner S; Hartmann F; Hartmann J; Haus G; Hoxha E; Karls R; Koga H; Kreusch J; Lallas A; Majenka P; Marghoob A; Massone C; Mekokishvili L; Mestel D; Meyer V; Neuberger A; Nielsen K; Oliviero M; Pampena R; Paoli J; Pawlik E; Rao B; Rendon A; Russo T; Sadek A; Samhaber K; Schneiderbauer R; Schweizer A; Toberer F; Trennheuser L; Vlahova L; Wald A; Winkler J; Wölbing P; Zalaudek I
    Ann Oncol; 2018 Aug; 29(8):1836-1842. PubMed ID: 29846502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Intelligence and Its Effect on Dermatologists' Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study.
    Maron RC; Utikal JS; Hekler A; Hauschild A; Sattler E; Sondermann W; Haferkamp S; Schilling B; Heppt MV; Jansen P; Reinholz M; Franklin C; Schmitt L; Hartmann D; Krieghoff-Henning E; Schmitt M; Weichenthal M; von Kalle C; Fröhling S; Brinker TJ
    J Med Internet Res; 2020 Sep; 22(9):e18091. PubMed ID: 32915161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Artificial intelligence-based classification for the diagnostics of skin cancer].
    Winkler JK; Haenssle HA
    Dermatologie (Heidelb); 2022 Nov; 73(11):838-844. PubMed ID: 36094608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks.
    Maron RC; Weichenthal M; Utikal JS; Hekler A; Berking C; Hauschild A; Enk AH; Haferkamp S; Klode J; Schadendorf D; Jansen P; Holland-Letz T; Schilling B; von Kalle C; Fröhling S; Gaiser MR; Hartmann D; Gesierich A; Kähler KC; Wehkamp U; Karoglan A; Bär C; Brinker TJ;
    Eur J Cancer; 2019 Sep; 119():57-65. PubMed ID: 31419752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task.
    Brinker TJ; Hekler A; Enk AH; Klode J; Hauschild A; Berking C; Schilling B; Haferkamp S; Schadendorf D; Fröhling S; Utikal JS; von Kalle C;
    Eur J Cancer; 2019 Apr; 111():148-154. PubMed ID: 30852421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task.
    Brinker TJ; Hekler A; Enk AH; Klode J; Hauschild A; Berking C; Schilling B; Haferkamp S; Schadendorf D; Holland-Letz T; Utikal JS; von Kalle C;
    Eur J Cancer; 2019 May; 113():47-54. PubMed ID: 30981091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observational study investigating the level of support from a convolutional neural network in face and scalp lesions deemed diagnostically 'unclear' by dermatologists.
    Kommoss KS; Winkler JK; Mueller-Christmann C; Bardehle F; Toberer F; Stolz W; Kraenke T; Hofmann-Wellenhof R; Blum A; Enk A; Rosenberger A; Haenssle HA
    Eur J Cancer; 2023 May; 185():53-60. PubMed ID: 36963352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does sex matter? Analysis of sex-related differences in the diagnostic performance of a market-approved convolutional neural network for skin cancer detection.
    Sies K; Winkler JK; Fink C; Bardehle F; Toberer F; Buhl T; Enk A; Blum A; Stolz W; Rosenberger A; Haenssle HA
    Eur J Cancer; 2022 Mar; 164():88-94. PubMed ID: 35182926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Diagnostic Performance of Dermatologists Cooperating With a Convolutional Neural Network in a Prospective Clinical Study: Human With Machine.
    Winkler JK; Blum A; Kommoss K; Enk A; Toberer F; Rosenberger A; Haenssle HA
    JAMA Dermatol; 2023 Jun; 159(6):621-627. PubMed ID: 37133847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association between different scale bars in dermoscopic images and diagnostic performance of a market-approved deep learning convolutional neural network for melanoma recognition.
    Winkler JK; Sies K; Fink C; Toberer F; Enk A; Abassi MS; Fuchs T; Haenssle HA
    Eur J Cancer; 2021 Mar; 145():146-154. PubMed ID: 33465706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skin lesions of face and scalp - Classification by a market-approved convolutional neural network in comparison with 64 dermatologists.
    Haenssle HA; Winkler JK; Fink C; Toberer F; Enk A; Stolz W; Deinlein T; Hofmann-Wellenhof R; Kittler H; Tschandl P; Rosendahl C; Lallas A; Blum A; Abassi MS; Thomas L; Tromme I; Rosenberger A;
    Eur J Cancer; 2021 Feb; 144():192-199. PubMed ID: 33370644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The Rise of Artificial Intelligence - High Prediction Accuracy in Early Detection of Pigmented Melanoma].
    Jutzi T; Krieghoff-Henning EI; Brinker TJ
    Laryngorhinootologie; 2023 Jul; 102(7):496-503. PubMed ID: 36580975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts.
    Haggenmüller S; Maron RC; Hekler A; Utikal JS; Barata C; Barnhill RL; Beltraminelli H; Berking C; Betz-Stablein B; Blum A; Braun SA; Carr R; Combalia M; Fernandez-Figueras MT; Ferrara G; Fraitag S; French LE; Gellrich FF; Ghoreschi K; Goebeler M; Guitera P; Haenssle HA; Haferkamp S; Heinzerling L; Heppt MV; Hilke FJ; Hobelsberger S; Krahl D; Kutzner H; Lallas A; Liopyris K; Llamas-Velasco M; Malvehy J; Meier F; Müller CSL; Navarini AA; Navarrete-Dechent C; Perasole A; Poch G; Podlipnik S; Requena L; Rotemberg VM; Saggini A; Sangueza OP; Santonja C; Schadendorf D; Schilling B; Schlaak M; Schlager JG; Sergon M; Sondermann W; Soyer HP; Starz H; Stolz W; Vale E; Weyers W; Zink A; Krieghoff-Henning E; Kather JN; von Kalle C; Lipka DB; Fröhling S; Hauschild A; Kittler H; Brinker TJ
    Eur J Cancer; 2021 Oct; 156():202-216. PubMed ID: 34509059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A convolutional neural network trained with dermoscopic images of psoriasis performed on par with 230 dermatologists.
    Yang Y; Wang J; Xie F; Liu J; Shu C; Wang Y; Zheng Y; Zhang H
    Comput Biol Med; 2021 Dec; 139():104924. PubMed ID: 34688173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.