These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34096699)

  • 1. Mechanistic Insight into the Reactivities of Aqueous-Phase Singlet Oxygen with Organic Compounds.
    Barrios B; Mohrhardt B; Doskey PV; Minakata D
    Environ Sci Technol; 2021 Jun; 55(12):8054-8067. PubMed ID: 34096699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an Elementary Reaction-Based Kinetic Model to Predict the Aqueous-Phase Fate of Organic Compounds Induced by Reactive Free Radicals.
    Minakata D
    Acc Chem Res; 2024 Jun; 57(12):1658-1669. PubMed ID: 38804206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSARs for phenols and phenolates: oxidation potential as a predictor of reaction rate constants with photochemically produced oxidants.
    Arnold WA; Oueis Y; O'Connor M; Rinaman JE; Taggart MG; McCarthy RE; Foster KA; Latch DE
    Environ Sci Process Impacts; 2017 Mar; 19(3):324-338. PubMed ID: 27942650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Singlet-Oxygen Generation in Alkaline Periodate Solution.
    Bokare AD; Choi W
    Environ Sci Technol; 2015 Dec; 49(24):14392-400. PubMed ID: 26594871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.
    Minakata D; Crittenden J
    Environ Sci Technol; 2011 Apr; 45(8):3479-86. PubMed ID: 21410278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Singlet oxygen production abilities of oxidated aromatic compounds in natural water.
    Wang M; Xiang X; Zuo Y; Peng J; Lu K; Dempsey C; Liu P; Gao S
    Chemosphere; 2020 Nov; 258():127308. PubMed ID: 32535450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative structure-activity relationship models for predicting singlet oxygen reaction rate constants of dissociating organic compounds.
    Li T; Huang Y; Wei G; Zhang YN; Zhao Y; Crittenden JC; Li C
    Sci Total Environ; 2020 Sep; 735():139498. PubMed ID: 32485452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of linear free energy relationships for aqueous phase radical-involved chemical reactions.
    Minakata D; Mezyk SP; Jones JW; Daws BR; Crittenden JC
    Environ Sci Technol; 2014 Dec; 48(23):13925-32. PubMed ID: 25368975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative structure-activity relationships for oxidation reactions of organic chemicals in water.
    Canonica S; Tratnyek PG
    Environ Toxicol Chem; 2003 Aug; 22(8):1743-54. PubMed ID: 12924575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic Insight into the Reactivity of Chlorine-Derived Radicals in the Aqueous-Phase UV-Chlorine Advanced Oxidation Process: Quantum Mechanical Calculations.
    Minakata D; Kamath D; Maetzold S
    Environ Sci Technol; 2017 Jun; 51(12):6918-6926. PubMed ID: 28541663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-Dependent Singlet O
    Lu W; Sun Y; Zhou W; Liu J
    J Phys Chem B; 2018 Jan; 122(1):40-53. PubMed ID: 29185758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Singlet oxygen in the removal of organic pollutants: An updated review on the degradation pathways based on mass spectrometry and DFT calculations.
    Rayaroth MP; Aravind UK; Boczkaj G; Aravindakumar CT
    Chemosphere; 2023 Dec; 345():140203. PubMed ID: 37734498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyoxometalate sensitization in mechanistic studies of photochemical reactions: the decatungstate anion as a reference sensitizer for photoinduced free radical oxygenations of organic compounds.
    Tanielian C; Schweitzer C; Seghrouchni R; Esch M; Mechin R
    Photochem Photobiol Sci; 2003 Mar; 2(3):297-305. PubMed ID: 12713231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes.
    Cheng X; Guo H; Zhang Y; Wu X; Liu Y
    Water Res; 2017 Apr; 113():80-88. PubMed ID: 28199865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinduced Release of Volatile Organic Compounds from Fatty Alcohols at the Air-Water Interface: The Role of Singlet Oxygen Photosensitized by a Carbonyl Group.
    Lin J; Dai Q; Zhao H; Cao H; Wang T; Wang G; Chen C
    Environ Sci Technol; 2021 Jul; 55(13):8683-8690. PubMed ID: 33966388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trimethoprim: kinetic and mechanistic considerations in photochemical environmental fate and AOP treatment.
    Luo X; Zheng Z; Greaves J; Cooper WJ; Song W
    Water Res; 2012 Mar; 46(4):1327-36. PubMed ID: 22244271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper Inhibition of Triplet-Induced Reactions Involving Natural Organic Matter.
    Pan Y; Garg S; Waite TD; Yang X
    Environ Sci Technol; 2018 Mar; 52(5):2742-2750. PubMed ID: 29425033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic and Kinetic Study of Singlet O2 Oxidation of Methionine by On-Line Electrospray Ionization Mass Spectrometry.
    Liu F; Lu W; Yin X; Liu J
    J Am Soc Mass Spectrom; 2016 Jan; 27(1):59-72. PubMed ID: 26306590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation and Site-specific Oxidation of Aquatic Extracellular Bacterial Leucine Aminopeptidase by Singlet Oxygen.
    Egli CM; Stravs MA; Janssen EML
    Environ Sci Technol; 2020 Nov; 54(22):14403-14412. PubMed ID: 33146524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parabola-like shaped pH-rate profile for phenols oxidation by aqueous permanganate.
    Du J; Sun B; Zhang J; Guan X
    Environ Sci Technol; 2012 Aug; 46(16):8860-7. PubMed ID: 22835160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.